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1 Foreword
1.1 Where this document came from
I wrote the first edition of this document as a graduate student for use by my
research group, the Alm Lab at MIT. In 2018, I published the second edition
online. Now, in 2021, I’m updating this document with a third edition in order to
reorganize the material and to include two important new developments: denois-
ing and QIIME 2. I’m grateful to OpenBiome, which gave me the opportunity
to do this revision as part of a microbiome science seminar course for Aga Khan
University.

1.2 What this document is for
My goal for this document is to help you understand the theory behind 16S
data processing. Processing 16S data involves a lot of very small decisions
(that probably have a small effect on your results) and a few big decisions (that
certainly have a big effect on your results). The nice pipelines make it possible
for you to shut your eyes to these complications. In contrast, I want to empower
you to be able to critique and doubt other people’s methods.

1.3 What this document is not
This document is not perfect. It is full of my own ignorance, ideas, and opinions.
Take it with a grain of salt.

This document is not a literature review. Next-generation sequencing for micro-
bial ecology is a large field, and here I just scratch the surface.

This document is not a tutorial. If you desperately need to turn some raw data
into OTU tables in the next 10 hours, don’t read this document. If you want
to know something more principled about how to turn fastq’s into OTU tables,
read on.
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2 Where 16S data comes from
2.1 What is 16S data?
By “16S data” I mean metagenomic amplicon sequencing of some section of the
bacterial 16S rRNA gene.

The use of the term “metagenomic” in this context may be confusing, since
“metagenomics” is often used interchangeably with “shotgun whole-genome
metagenomic sequencing”. Technically, “metagenomic” means “related to more
than one genome”, that is, sampling from an entire community rather than from
a single cell or a single colony. Both 16S sequencing and whole-genome shotgun
sequencing intend to sample from many bacterial species in the sample, so they
are both technically metagenomic.

It is also worth noting that, while amplicon sequencing in theory provides strictly
less information that shotgun sequencing —since it examines only a part of
bacteria’s genomes rather the entire genomes— amplicon-based approaches have
three key advantages.

First, shotgun sequencing projects tend to be more expensive, since they need
to sequence deeper to get the same information about microbial community
composition. In theory, if you shotgun sequence at a great enough sequencing
depth, you could reconstruct all the information that you could get from 16S
amplicon sequencing, but this can be an expensive proposition.

Second, because only bacteria and archaea have the 16S gene,1 a tube of 16S
amplicon DNA mostly carries information about microbes. In contrast, the
majority of shotgun reads from, say, a swab of human skin will be human DNA.
Amplicon sequencing may be some help in terms of privacy, since research
subjects are likely more comfortable with their microbes’ DNA being sequenced
rather than their own human DNA. Furthermore, if you are interested in only
microbes, using amplicon sequencing means that you are not spending any of
your DNA sequencing budget on sequencing human DNA that is unimportant
to your research question.

Finally, amplicon sequence data is substantially easier to work with from a
bioinformatic point of view. Shotgun sequences need to be assembled to recreate
the genome sequence, which is computationally and conceptually demanding.
By contrast, 16S sequencing data provides information from just one part of the
genome, and each read is likely to cover the entire area of interest.

1Chloroplasts, found in algae and other eukaryotes, have a ribosomal gene that is very
similar to 16S and often ends up getting amplified in 16S data sets.
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2.2 The 16S gene
All bacteria and archaea have at least one copy of the 16S gene in their genome.2
The gene has some sections that are conserved, meaning that they are very similar
across all bacteria, and some sections that are variable (or “hypervariable”). The
idea behind 16S sequencing is that the variable regions are not under strong
evolutionary pressure, so random mutations accumulate there. Closely-related
bacteria will have more similar variable regions than distantly-related bacteria.

Figure 1: Across the 16S gene, some regions are “variable” (regions “V1” through
“V9”) relative to the surrounding “conserved” regions. The x-axis shows position
in the 16S gene, measured by nucleotides as they appear in the E. coli genome.
The y-axis (H ′) is “entropy”, a measure of the variability in the nucleotides at
that position in the gene. Vasileiadis et al. (doi:10.1371/journal.pone.0042671)

2.3 Getting DNA from a sample
After a sample is taken, the cells in the sample are lysed, typically using some
combination of chemical membrane-dissolving and physical membrane-busting.
The DNA in the sample is then extracted, meaning that all the protein, lipids,
and other stuff in the sample is thrown away. From this pile of DNA spaghetti,
we aim to collect information about the bacteria that were in the original sample.

2It’s not unusual for bacteria to have multiple copies of the 16S gene, and those copies
might not be identical to one another. Some people are concerned by the effect this could
have on interpretations of 16S data (e.g., Kembel et al. [doi:10.1371/journal.pcbi.1002743] and
Case et al. [doi:10.1128/AEM.01177-06]).
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2.4 Amplifying the gene
In the amplicon sequencing approach, polymerase chain reaction (PCR) is used
to amplify a section of the 16S gene. The size of the sequenced section is limited
by the length of reads produced by high-throughput sequencing. The sections of
the 16S gene that are amplified are named according to what variable regions of
the gene are covered.

Of the nine variable regions, named V1 through V9, the region most commonly
used in the microbiome literature is V4. However, different regions can provide
different taxonomically resolution for different parts of the microbial tree of life.
V4 is popular because it provides good taxonomic resolution for gut microbiota.
By contrast, the an amplicon covering the first two regions (V1-V2) is more
common in studies of the skin microbiome because those regions provide better
taxonomic resolution for the microbes commonly found on the skin.

PCR reactions on these regions have primers that match the constant regions
around the targeted variable regions. Papers should always say which primers
they used, and they usually also mention the amplified region. The primers have
names like 8F (i.e., a forward primer starting at nucleotide 8 in the gene) and
1492R (i.e., a reverse primer starting at nucleotide 1492).

2.5 The amplified DNA is not exactly like the original
DNA

The process of extracting DNA from bacterial cells and then amplifying a 16S
region introduces certain biases into the resulting sequence data. These effects
mean that observed differences in bacterial community composition between
samples collected in a single study are usually more reliable than apparent
differences in composition within sample. In other words, 16S data are better
able to support a statement like “species X is more common in patient cohort A
than in to cohort B” rather than a statement like “species X is more abundant
than species Y ”.

These biases also means that large effects, like variations over orders of magnitude,
are to be trusted far more than smaller changes.

2.5.1 Extraction bias

Different cells respond differently to different extraction protocols. Using different
extraction protocols on the same sample can produce markedly different results.3
My takeaway is that, if you’re comparing two different data sets, it’s important
to know if they used the same extraction methodology, since differences in the
16S data could be due to differences in the microbes or due to differences in the
methods used to extract the DNA.

3E.g., Salter et al. (doi:10.1186/s12915-014-0087-z), Walker et al.
(doi:10.1371/journal.pone.0088982), Rochelle et al. (doi:10.1016/0378-1097(92)90188-
T), etc. But compare Rubin et al. (doi:10.1002/mbo3.216).
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2.5.2 PCR bias

Although we say the PCR primers bind a “conserved” region, there is still
variation in those regions. Thus, some bacteria in the sample will have different
nucleotides at the primer binding site, meaning that the PCR primers will bind
with different affinities to the DNA of different bacteria. This effect decreases the
number of reads from bacteria whose constant regions don’t match the primer.4

“PCR bias” encompasses other things beyond primer site binding bias. It’s known
that PCR has different efficiencies for different types of sequences, meaning that
some 16S variable regions will amplify better than others. Also, statistical
fluctuations can occur, especially in low-diversity samples. This means that a
sequence that, by chance, gets lots of amplification in early PCR cycles could
dominate the sample in late PCR cycles.

In general, PCR bias is more pronounced when the density of bacteria in the
original sample is low, such that the PCR needs to be run for more cycles. For
example, samples of human stool, in which the density of bacteria is enormous,
are experimentally less finicky than skin swabs, which typically have very lower
bacterial concentrations.

2.5.3 Chimeras

PCR also creates weird artifacts called chimeras. When using PCR to amplify
two DNA sequences a and b, you’ll get many copies of a, many copies of b, and
some sequences that have an a head and b tail (or vice versa). If that chimeric
a-b sequence looks like a real bacterial sequence, it can confuse downstream
analyses.

2.5.4 Lab-, study-, and batch-specific effects

There are also biases that arise from any DNA-based experiment, like the biases
that result from the method of collection or storage. There are many studies
exploring how storage at different temperatures, storage for different lengths
of time, different storage buffers, and so forth affect the measured bacterial
community compositions. Regardless of what method of collection and storage
is used, using the same methodology for every sample in a study is a crucial tool
for reducing biases in the data.

2.6 Multiplexing
Next-generation sequencing became more helpful to microbial ecology when
sample multiplexing (or “barcoding”) was worked out in the early 2000s.5 Before
multiplexing, every sample had to be run on its own sequencing lane. This was
expensive and bioinformatically annoying, since, especially in those early days

4It may be that there are a lot of interesting bugs whose 16S sequences are so divergent
that they don’t match the typical primers (cf. Brown et al.; doi:10.1038/nature14486).

5Cf., e.g., Binladen et al. (doi:10.1371/journal.pone.0000197).
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of sequencing, it was often hard to distinguish a bad lane from a very unusual
sample.

Multiplexing, by contrast, adds a barcode (or “tag”) to the 16S amplicon. Each
barcode corresponds to a sample, and all amplicons in that sample get that
barcode. It’s now common to multiplex 96 (or 384) samples and sequence them
all in one lane.

Aside from making the sequencing 96-fold cheaper, multiplexing means that it’s
easier to include some controls in each lane. Negative controls usually just vehicle
with no DNA as a way to check for contamination from reagents or poor sample
preparation. Positive controls typically take the form of mock communities of
known composition, which can be used to check that the sequencing was not
“weird”. If you have a lot of samples from the same project and you need to run
them in more than one lane, you can use the positive controls as an internal
check that sequencing proceeded similarly across lanes.

2.7 Sequencing
A little more work has to be done before putting the sample in the sequencer.
These steps will depend on the sequencing platform. Here I’ll talk about Illumina
because it’s popular6 and I have experience with it. If you’re using a different
sequencing platform, like Nanopore, then you’ll need to learn about the quirks
of that platform elsewhere.

Samples to be sequenced on an Illumina machine need to have Illumina-specific
adapters added in a third PCR (one for amplification, one to add the barcodes,
and one to add the adapters). These adapters allow the DNA amplicons to bind
the flowcell, where they are sequenced.

It is sometimes also desirable to have a diversity region added between the
adapter and the 16S primer. The Illumina sequencers expect to see a diversity
of nucleotides at every read position. In amplicon sequencing, almost all the
reads are the same through the primer region, which can cause difficulties for
the sequencer.

All of these pieces —the 16S region you’re interested in, forward and reverse
primers, barcodes, diversity region, and Illumina adapters— are all made into a
single PCR construct, which is a single piece of DNA. The sequencer reads the
nucleotides in the construct and uses its knowledge about the arrangement of
the construct to infer which nucleotides are the region of interest and which are
the barcode.

6It wasn’t that long ago that 454 (or “Roche”) sequencing led the next-generation field.
Plenty of papers used “pyrosequencing” (the technical word for 454’s sequencing methodology)
as a synonym for “next-generation sequencing”.
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Figure 2: An example PCR construct.

3 16S data processing
As the microbiome field has matured, there are ever-better tools and pipelines
for processing 16S data. These resources can save you time and can enhance
reproducibility, but they are no substitute for a deep understanding of the
underlying processes. This chapter steps through the files and algorithms used
in the more mundane steps of 16S processing.

Figure 3: Overview of the 16S data processing and analysis process. Note the
nonlinearities in the process; there may be more than one way to proceed through
data processing and analysis. Reproduced from QIIME 2 documentation.
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3.1 Phase I: Preprocessing
Before talking about how to preprocess the data, it’s important to have a handle
on what exactly we’re talking about when we say “the data”.

The two important file formats for 16S data are fastq and fasta.7 Fastq is an
Illumina-specific raw data format,8 while fasta is the industry-standard way to
display processed sequence data.

3.1.1 Fastq format

Fastq files usually have the extension .fastq or .fq. They are made up of entries
that each correspond to a single read. Every entry is four lines; a well-formed
fastq file has a number of lines that is a multiple of four. The lines in the entry
are:

1. The header line
2. The sequence line
3. The plus line
4. The quality line

The header line must begin with the character @. The content of the rest of the
line depends on the Illumina software version, but in general it gives information
about the read: the name of the instrument it was sequenced on, the flowcell
lane, the position of the read on the cell, and whether it is a forward or reverse
read. In some version of Illumina, the barcode read is in the read’s header.

Like the name suggests, the sequence line is a series of letters encoding the
sequencing data, one character per nucleotide. Note that the letters might not
all be ACGT. Other letters indicate that the nucleotide might be any of a group
of bases. For example, R means purine (A or G). N means “no idea, any base
possible”.9

The third line must begin with the plus-character +. The rest of the line after
the plus can be anything; it is often left blank.10

7Technically, these formats should be written FASTQ and FASTA, but I find this cumber-
some, so I write them as if they were not acronyms. Fastq is pronounced “fast-Q”. Fasta is
supposed to be pronounced as “fast-A”, but I hear “fast-uh” just as often.

8In what follows, I’ll talk about “raw data”, by which I mean data that you would get from
the sequencing center. For Illumina data at least, there is actually a more raw kind of data
that comes right out of the sequencing machine that gets processed right away. The software
that processes that very raw data changes slightly across different version, so be prepared for
slight variations in the format of your “raw” data.

9These other options are the IUPAC nucleotide abbreviations. There is a one-letter code
for every possible combination of the four nucleotides.

10The original fastq specification (doi:10.1093/nar/gkp1137) allowed the sequence and quality
information to run over multiple lines like in the fasta format. This led to a lot of confusion,
since + and @ appear in some quality encodings. It’s now recommended to not spread the
sequence and quality information over multiple lines. Thus, the plus line is there for backward
compatibility.
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The quality line gives information about the quality of the base calls shown in
the sequence line. Each character gives information about the quality of one
base call. Confusingly, the encoding has changed in overlapping and sometimes
non-redundant ways.11 In the newest Illumina format, the encoding goes, from
low quality to high quality:

!#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI

The letter I, the highest-quality mark, means that there is a 10−4.0 probability
that this base is wrong (i.e., a 99.99% chance that it is correct). H, the second-
highest quality, means that there is a 10−3.9 chance; G means 10−3.8, and so
on.12 The exclamation point is special: it means a quality of zero, i.e., that the
sequencer has no idea what that base is.13

Here’s an example fastq entry. The sequence and quality lines are too long to fit
on the page, so I cut out some letters in the middle and put those dots instead:

@MISEQ578:1:1101:15129:1752#CCGACA/1
TATGGTGCCAGCCGCCGCGGTA...GCGAAGGCGGCTCACTGGCTCGATACTGACGCTGAG
+
>1>11B11B11>A1AA0A00E/...FF@@<@FF@@@@FFFFFFEFF@;FE@FF/9-AAB##

Some things to note about this read:

• The first line gives information about the machine used (MiSeq) and where
the read was on the flow cell. CCGACA was the barcode read, and the final
/1 means it was a forward read.

• The plus line has been left blank.
• The quality of the read’s base calls decreases from >, encoding quality

29 (i.e., a 10−2.9 = 0.1% probability of error), all the way down to #, or
quality 2 (i.e., a 10−0.2 = 63% probability of error).

3.1.2 Fasta format

Fasta files usually have the extension .fasta, .fa, or .fna.14 They are made
up of entries that each correspond to a single sequence. Each entry consists of a

11Technically, these different encodings are named by their ASCII “offsets”. ASCII is a
system that associates individual characters with integers. The system I show here has an
ASCII offset of 33: the character I has an ASCII value of 73, and the offset means you subtract
the offset 33 from the ASCII value 73 to get the quality score 40. The other common offset is
64: in that case, the character I encodes quality 9. Illumina used a 64-offset for a while, but
newer machines use a 33-offset.

12This conversion between quality Q (the integer) and the probability p of incorrect calling
is the “Phred” or “Sanger” system: Q = −10 log10 p. There is at least one other way of
converting between Q and p, the “Solexa” system.

13Even more confusingly, in some versions of Illumina, the very low ASCII scores were used
to mean special things. In the older, 64-offset Illumina encoding, quality 3 (character C) was
the lowest possible, and the quality 2 character (character B) was instead used to show that the
Illumina software had done its own internal quality trimming and had decided that, starting
with the first B, that the rest of the sequence was “bad”.

14The last a in fasta stands for “all”, meaning nucleotide or amino acid or whatever. The n
in fna stands for “nucleotide”.
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header line and one or more sequence lines. The header line must start with the
greater-than symbol >. This signals the start of a new entry. The rest of the
header line is an identifier, analogous to the content of the header line in a fastq.

In a fastq file, each linebreak was meaningful. In a fasta file, only the linebreak
at the end of the header line is meaningful. Linebreaks in the following sequence
lines are all ignored. The sequence for this entry just keeps on going until you
hit another >. The early recommendation was to wrap all lines at 80 characters
to make them easy to read on old-school terminals. Many people and software
tools conform to this recommendation; others make each entry just two lines,
one header and one sequence.

Fasta files provide strictly less information than fastq files, so normally you’ll
move to a fasta format after quality filtering, when you’ve decided you aren’t
going to use the quality data again.

Here’s an example fasta entry in the traditional format:

>sequence1
TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCGGGTTGT
TAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGCATCCTT
GAGTACAGTAGAGGTAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACGAA
GAACTCCGATTGCGAAGGCAGCCTGCTGGACTGTAACTGACGCTGATGCTCGAAAGTGTG

3.1.3 Finding your raw data and metadata

Before trying to process your dataset, be sure you have the appropriate raw data
and metadata. In all cases, this means you’ll need at least one set of reads. For
Illumina, this means a fastq file of forward sequences might have a name like:

130423Alm_D13-1939_R1_sequence.fastq

This filename has information about the date of sequencing (2013-04-23), the
group that requested the sequencing (Alm Lab), and some specifics about the
sequencing run. The _R1_ indicates that these were forward reads.

If you did paired-end sequencing, you will also need the reverse reads. This is
a fastq file with the same filename as the forward reads except with _R2_ in it.
Every entry in the reverse reads should match an entry in the forward reads.

3.1.4 Demultiplexing

As mentioned earlier, multiple samples are multiplexed so that they can be
sequenced in one sequencing lane. Now that sequencing is complete, the samples
must be demultiplexed, which means that the reads from the one sequencing lane
are divided up into their corresponding samples. It is now standard practice
for delivered to you to have already been demultiplexed. Rather than all the
forward reads from a sequencing run being in one big file, they are split, with
one file per sample. Reverse reads are similarly split so that each sample should
have two associated read files, one forward and one reverse.
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If you data are not demultiplexed (i.e., you only have one big file of forward
reads), then you will also need the barcode or index reads. Depending on your
Illumina version, this information might be in different places. In some datasets,
it’s in the file with the forward reads. For example, in the fastq entry above, the
header line contains the barcode read CCGACA. In other datasets, you might find
the index reads in a file with a name that has _R3_, _I_, or _I1_ in it. You will
also need a barcode map that links each barcode with each sample.

In theory, demultiplexing sounds simple: you look in the raw sequence for the
barcode, look up what sample that barcode corresponds to using the barcode
map, and then trim off the barcode. In practice, there are two questions that
need to be answered:

• Which of the known barcodes is the best match for this barcode read? That’s
a pretty straightforward answer. But what if there’s a tie? In fact, barcodes
are chosen with an error-correcting code15 so that a tie implies that you
have at least two errors in the read, which is unlikely.

• Is the match with the known barcode good enough? A common approach is,
given a barcode read, to compare that read with all the known barcodes
(i.e., the barcodes you’re looking for). If the known barcode that matches
best has more than one mismatch with the barcode read, call that read
“bad” and discard it.

3.1.5 Removing primer sequences

During PCR amplification, it is the primer that is amplified, not the DNA that
the primer was bound to. This means that, if there was a mismatch between
the primer and the DNA of interest, you won’t see the actual DNA; you only
ever see the primer sequence. Thus, keeping the primer sequences in your reads
makes it appear in downstream analyses as if the primer sequence was the actual
sequence present in the sampled DNA. The common practice is to cut off the
primers, and nowadays primers may have already been removed (or “trimmed”)
before they are handed to you, the researcher.

If the primers haven’t already been removed, you’ll need to remove them yourself.
In an ideal world, this is straightforward: you find the piece of your read that
matches the primer, and you pop it off. In practice, there are two important
considerations:

• Where do you look for the primer? Does the primer start at the very first
nucleotide of the read, or a little further in? You can put a lot of flexibility
in this step without a lot of negative effects, but it’s good to know what’s
going on in your data.

• What does “match” mean? How many mismatched nucleotides do you
allow between the read and your primer sequence before you consider the
read “bad”? For example, you might discard the reads that have more

15E.g., Hamady et al. (doi:10.1038/nmeth.1184)
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than one mismatch in the primer sequence.

There are also some less intellectually interesting “gotcha’s” that I suffered
multiple times as a graduate student:

• I didn’t know the primer sequences, or the primer sequences I was told
were not the actual ones present in the data.

• I thought I had the sequences of the primers but I actually had the reverse
complements of those primers.

• I thought (or had been told) that the primers had been pre-removed when
they were actually still present.

3.1.6 Summary of expected files

All told, you will likely need:

• Demultiplexed forward reads, with one file per sample
• Demultiplexed reverse reads, with one file per sample

However, depending on how the data were delivered to you, you might also need:

• Non-demultiplexed forward reads (i.e., one big file of forward reads)
• Non-demultiplexed reverse reads
• Barcode reads
• Barcode map
• Primer sequences

If you download a dataset or get it from a collaborator, it’s important to
understand which of these preprocessing steps have already been performed.

3.2 Phase II: Cleaning
These steps take the raw data and turn it into biologically relevant stuff. There is
some freedom about the order in which they can be done. I separate these steps
out from preprocessing because the choices you make here can more substantially
affect your data.

3.2.1 Quality filtering

Sequences tend to vary in overall quality —some good, some bad— and the
number of bases they have that are good. Inherent in the Illumina technology is
a trend for sequences to decrease in quality as you move along the read.

The sequencer will give you a sort of quality report about your sequences’ average
quality. It will give you a sense of whether your sequencing run as a whole was
good, and it will give you a sense of whether you got the sort of good-quality
length you were hoping for. The big quality report gives you a sense of whether
you should do the whole sequencing run over again.
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Figure 4: A read quality report delivered by the Illumina software.

Even in a good sequencing run there are bad sequences that should be filtered
out. There are two common ways to quality filter:

• Quality trimming means truncating a read at some nucleotide after which
the read is “bad”.16 A common approach is to truncate everything after
the first nucleotide whose quality is below some threshold.

• Global quality filtering means discarding an entire read if the average quality
of the read is too low. Maybe no individual nucleotide falls below your
trim threshold, but the general poor quality of the read means that you’d
rather not include it in analysis. This criterion is expressed equivalently as
“average quality” or “expected number of errors”.17

3.2.2 Merging

When doing paired-end sequencing, it’s desirable for the two reads in the pair to
overlap in the middle. In that case you can merge (or “overlap”, “assemble”, or
“stitch”) the two reads into a single full-length read whose quality in the middle
positions is hopefully greater than the quality of either of the two reads that
produced it.

Merging requires answering a few, fairly complex questions:
16Confusingly, “trimming” also refers to a different process when, if you’re doing unpaired

amplicon sequencing, you pick a length, discard all reads shorter than that, and truncate all
the longer sequences at that length. It is essential to do this when using certain de novo OTU
calling methods, and it’s probably beneficial to do with reference-based OTU calling and or
taxonomy assignment methods.

17Edgar & Flyvbjerg (doi:10.1093/bioinformatics/btv401)
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Figure 5: An example of two reads differ in overall quality and number of
“non-bad” reads.

Figure 6: Merging aligns reads, makes a new sequence, and com-
putes new quality scores. Adapted from the usearch manual
(drive5.com/usearch/manual/merge_pair.html).
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• What is the best position for merging? If you were sure all your amplicons
are exactly the same size, then this is trivial: just overlap them at the right
length. However, even in amplicon sequencing, there are insertions and
deletions in the 16S variable regions, so we can’t be sure that all merged
reads will be the exactly the same length.

• Is the best position good enough? If you have two reads that don’t overlap
at all, should you even include it in the downstream analysis?18 How good
is good enough?

• What are the quality scores of the merged nucleotides? This requires some
Bayesian statistics.19

3.3 Phase III: Denoising (and chimera removal)
Denoising is the process of accounting for errors inherent in sequencing technology,
especially the Illumina platform. In short, denoising “corrects” sequencing error,
decreasing the diversity of sequences in the data that are due to technological
error rather than to true biological diversity. Two important implementations of
denoising are DADA2 and Deblur.20

The work of denoising was previously done as a part of operational taxonomic
unit (OTU) calling. Denoising and OTU calling are sufficiently conceptually
complex and historically intertwined that I will discuss them separately in the
next chapter.

This step typically also includes dereplication. Because there are fewer unique
sequences (strings of ACGT) than there are reads, it makes more sense to keep a
list of unique sequences and a table of how many times each sequence appears
in each sample.

3.3.1 Chimera removal (or “slaying”)

As mentioned early on, PCR can produce chimeric sequences.21 Depending
on your choices about OTU calling, you may want to remove chimeras after
dereplicating. Chimera removal checks to see which of your dereplicated sequences
can be made by joining the first part of one sequence (the “head”) with the last
part of another sequence (the “tail”).

Chimera removal methods come in two main flavors: reference-based and de
novo. In reference-based methods, you look for the head and tail sequences
in some database. Popular databses include Greengenes, SILVA, the Broad

18If you had two paired-end reads that didn’t overlap but you were somehow sure of the
final amplicon size, then you could insert a bunch of N’s in between.

19Rodrigue et al. (doi:10.1371/journal.pone.0011840); Edgar & Flyvbjerg
(doi:10.1093/bioinformatics/btv401)

20Callahan et al. (doi:10.1038/nmeth.3869); Amir et al. (doi:10.1128/mSystems.00191-16)
21The Chimera was a monster in Greek mythology. It had the head of a lion and the tail of

a snake. It was slain by the hero Bellerophon.
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Institute’s ChimeraSlayer (or “Gold”) database, and the Ribosomal Database
Project (RDP) database.

In de novo methods, you ask which of your sequences have could be generated
by combining other (typically more abundant) sequences from that same dataset.
In the past, this was a computationally-expensive undertaking, but there are
ever-improving methods, notably, the UPARSE22 algorithm.

3.4 Phase IV: OTU calling
As mentioned above, calling (or “picking”) operational taxonomic units (OTUs)
is a conceptually and historically complex topic, so I will treat it in a separate
chapter. In short, OTU calling assigns every dereplicated sequence to a group,
or OTU. Just as dereplication produces a list of unique sequences and a table
indicating how many times each sequence appears in each sample, OTU calling
produces a list of OTUs’ representative sequences and an OTU table that shows
the number of times each OTU appeared in each sample.

3.4.1 Phase V: Analysis

The part where you actually use your data! Analysis is outside the scope of this
work.

4 Denoising and OTU calling
As mentioned in the last chapter, denoising and OTU calling are complex and
intertwined topics, so I discuss them separately here.

4.1 An abridged history of the OTU
In the 1980s, Carl Woese showed that the 16S gene could be used as a molecular
clock. Using 16S data, he re-drew the tree of life, breaking up the older Monera
into Bacteria and Archaea.23 The 16S gene was therefore a promising practical
candidate for distinguishing bacterial species.24

The species concept is easy to define for sexual macroorganisms: two living
things of opposite sex are in the same species if they can produce fertile offspring
together. Bacteria don’t have sex, but they do perform homologous recombina-
tion. Homologous recombination requires some sequence similarity, so it came

22Edgar (doi:10.1038/nmeth.2604)
23Woese, Kandler, Wheelis (doi:10.1073/pnas.87.12.4576)
24In 1991, PCR-amplified portions of the 16S gene were used to identify known species

(Weisburg et al. [doi:10.1128/jb.173.2.697-703.1991]). The paper has a prescient final sentence:
“While [PCR] should not be a routine substitute for growing bacteria, picking individual
colonies, and confirming their phenotypic and biochemical identities, it will enable experiments
to be performed that were not previously possible.”
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about that a common definition of a bacterial species was all those strains whose
isolated DNA was 70% DNA-DNA-hybridization similar.25

In the 1990s, people sequenced the 16S genes of the strains that had been grouped
into species by the hybridization assay. It emerged as a rule of thumb that two
bacteria were the same species if their 16S genes had 97% nucleotide identity.
Because of this history, a lot of discussion around OTUs involves finding 97%
clusters, and “OTU” was often used as a shorthand for “97% clusters”.

Personally, I think the word “operational” in OTU should mean an OTU is
whatever group of sequencing reads you choose to be the unit of analysis in your
downstream work. This, however, is not the standard nomenclature. I’ll also
note that there are various other terms like “phylotype” and “oligotype”26 used
for groupings related to but conceptually distinct from “OTUs”.

4.2 Denoising
Historically, people called OTUs for a few reasons. One very practical reason
was data reduction. Dereplication can give you hundreds of thousands of unique
sequences, and doing analysis with hundreds of thousands of unique units was
computationally infeasible in the early days of 16S sequencing.

A second important and related reason was denoising. Imperfect technology
means that one can never really be sure whether two reads have different
sequences because of technological error or because those two reads arose from
biologically different sequences. One way to denoise data was to say that we
couldn’t really trust our equipment to be able to distinguish sequences that were
less than about 97% similar anyway, so we might as well lump those sequences
into one unit for analysis.

Today, we use purpose-built, highly sophisticated denoisers. To give a sense of
how denoisers work, consider this hypothetical example. Say you are sequencing
an amplicon that has only 10 nucleotides, and the sequencer has an error rate
of 1%, meaning that each base pair has an independent, 1% chance of being
misreported. Some straightforward math shows that there is a 90% chance that
all 10 nucleotides will be correctly reported, a 9.1% chance that 1 nucleotide will
be incorrect, and a 0.9% chance that 2 or more nucleotides will be incorrect.

In this example, if there was only one true sequence in the biological sample,
then we would expect 90% of reads to be that true sequence, while the remainder
would be split among the various erroroneous sequences. For example, of the
9.1% of reads with one error, one in ten (i.e., 0.91% of the total reads) would
have that error in the first nucleotide, and one-third of those reads (i.e., 0.3% of
the total reads) would have each of the 3 incorrect base pairs in it.

25Konstantinidis, Ramette, Tiedje (doi:10.1098/rstb.2006.1920). To this day there is still a
large debate about the microbial species “concept”.

26Eren et al. (doi:10.1111/2041-210X.12114)
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Table 1: Hypothetical example in which there is a single 10 nu-
cleotide sequence present in the sample DNA, a 1% error rate, and
an even distribution among errors.

Percent of reads Read sequence
90% GACAGGTACA
0.3% AACAGGTACA
0.3% CACAGGTACA
0.3% TACAGGTACA
0.3% GCCAGGTACA
0.3% GGCAGGTACA
0.3% GTCAGGTACA
. . . . . .

On the other hand, if one of these sequences that could be explained as error
was more frequent than was expected given the statistical model for errors, then
we would conclude it is also a real, biological sequence. For example, if the
first erroneous sequence (i.e., aacaggtaca) appeared as often as the original
sequence (gacaggtaca), then we would expect that they are both meaningful.
However, our ability to distinguish real biological variations from technological
error is limited by the abundance of these potentially erroneous sequences and
the sequencer error rate: if the error rate is high or the true variant sequence is
rare, we will not be able to determine that it is not simply an erroneous read.

Denoisers infer which observed read sequences are likely erroneous deviations from
other, more abundant, “true” sequences. In this way, denoisers can distinguish
between similar sequences that are likely to be truly biologically distinct, in ways
that 97% OTU calling cannot.

The output of denoising algorithms are called amplicon sequence variants (ASVs),
which are estimates of the true sequences that were presented in the original
DNA. The potentially substantial reduction in numbers of unique sequences that
comes from denoising, combined with improved computing power, means that,
in many cases, calling OTUs is no longer a practical necessity. However, because
the OTU concept dominated 16S data processing for so long, it is still common
to say that an analysis uses “100% identity OTUs”, which simply means that
each sequence or ASV was treated as its own OTU. In other words, “100% OTUs”
means that OTUs weren’t called at all!

4.3 Philosophical reasons for OTU calling
Although it is no longer stricly necessary to call OTUs, there are still philosoph-
ical27 and analytical for doing so, depending on your study’s purpose. If you

27Jax (doi:10.1086/506237) reviews the different ways ecological units are viewed from
ontological and functional perspectives.
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Figure 7: Denoising algorithms like DADA2 correct the original sequencing data
using statistical error models. OTU calling, by contrast, simply groups similar se-
quences. In this illustration, a denoiser can eliminate erroneous variants (the small
dots) while also distinguishing two similar but biologically distinct sequences
(red versus green). OTU calling removes the erroneous sequences at the cost of
lumping together meaningfully different sequences (red with green, dark with
versus light blue). Reproduced from Callahan et al. (doi:10.1038/nmeth.3869).

want to study bacterial species and are a firm believer in the idea that a 97%
cluster is the best approximation of a species, then you’d want to organize your
data into those approximate-species and go from there.

More generally, you’ll want to organize your sequences into some operational
unit (i.e., OTU) that works well with the kind of analysis you want to do. For
example, to examine very broad broad changes in community composition, you
might want to call OTUs that are your best approximations of phyla. If you’re
interested in what individual organisms are doing, you’ll probably want to do
very little (if any) grouping of sequences into OTUs, since the unique sequences
are, in a sense, the best information you have about those organisms.

Clustering your sequences into a few, large OTUs can make it easier to think
about your data, but beware: you want those clusters to be meaningful. You
want them to be the called in the way that makes them most useful for answering
the question you want to answer.

4.4 OTU-calling methods
There are multiple ways to group sequences into OTUs. Here I review the most
important ones, in the order I thought was easiest to explain.
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4.4.1 Amplicon sequence variants, or 100% identity OTUs

As discussed above, this approach, which was originally infeasible because of
computational and technical reasons, is becoming increasing popular. Lower
error rates from sequencers combined with sophisticated denoising algorithms
means that distinct amplicon sequence variants (ASVs), even ones that differ
from one another by only one nucleotide, may very well be biologically distinct.

4.4.2 De novo clustering

As the name suggests, de novo clustering means making your own OTUs from
scratch. There are many approaches to de novo clustering methods, but they
all follow the same basic principle: they try to identify a set of OTUs that are
at some maximum dissimilarity relative to one another. (As you might guess,
97% OTUs are popular.) Every OTU will be assigned a representative sequence,
which is either one of the OTU’s member sequences or a composite sequence
based on the members.

De novo clustering suffers from some insidious and very serious disadvantages.
First, de novo methods are more computationally expensive than other methods.
Second, it is becoming increasingly clear that many methods produce de novo
OTUs that are not stable, meaning that small changes in the sequence data you
feed into the algorithm can lead to large changes in the number of OTUs, the
OTUs’ representative sequences, and the assignment of reads to OTUs. Third,
it is difficult to incorporate new data into a dataset that has been processed
into de novo OTUs. It usually requires calling OTUs all over again. It’s also
difficult to compare de novo OTUs across datasets: you and I might have lots of
the same sequences, but our de novo OTUs might differ.

The principle advantage of de novo clustering is that it won’t throw out abundant
sequences from your data.

4.4.3 Reference-based methods

In reference-based OTU calling, the OTUs’ representative sequences are specified
ahead of time in a database like Greengenes. Each sequence in your query
dataset is assigned to one of the sequences in the reference dataset based on their
sequence similarity. Greengenes has been such a popular reference database that
I often heard “OTU” used to mean “the 97% OTUs in Greengenes”, although
that usage is becoming less common as denoising becomes more popular.

The principle advantages of reference-based calling are:

• Stability. Similar inputs should produce similar outputs, since you’re just
comparing to a fixed reference.

• Comparability. If you and I called our OTUs using the same reference, it’s
easy for us to check if we have similar sequences in our datasets.

• Computational cheapness. Unlike de novo OTU calling, reference-based
methods only need to hold one sequence in memory at a time, so they
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require less RAM and are easy to parallelize.
• Chimeras need not be slain. If you’re only keeping sequences that align to

some database, which has hopefully been pre-screened for chimeras, then
you don’t need to worry about them yourself.

The major weakness of reference-based methods is insidious: if a sequence in
your query dataset doesn’t match a sequence in the database, what do you do?
Frighteningly, many methods just throw it out without telling you. If you work
in the human gut microbiome, this might not bother you, since the gut is the
best-studied ecosystem, and gut bacteria are well represented in databases like
Greengenes. However, if you work in environmental microbiology or even in
mice, many of the sequences in your studied bacterial community might not be
sufficiently similar to a sequence in Greengenes to be assigned to a reference
OTU.

Reference-based methods also suffer a converse problem: what if your sequence
is an equally good match to more than one database entry? This can happen in
amplicon sequencing: the Greengenes OTUs are the entire 16S gene (about 1400
bases), but you only have a little chunk of it (say, 250 bases). The Greengenes
OTUs are, say, 97% similar (i.e., 3% dissimilar) across the entire gene, but they
might be identical over the stretch that aligns to your little chunk.

4.4.4 Open-reference calling

The process I described above —just throwing out non-matching sequences—
is called closed-reference calling. If you’re interested in those non-matching
sequences, you could gather them up and group then into de novo clusters, then
combine your reference-based OTUs with your de novo OTUs. This mix of
reference-based and de novo calling is named open-reference calling.

4.4.5 Taxonomy-based assignment

ASVs, 100% identity OTUs, and de novo OTUs can be hard to make sense of,
since they are essentially one or more strings of ACGT. Reference OTUs also
tend to have unilluminating names. For example, the Greengenes OTUs are
labeled with numbers. To help interpret the raw sequences, it’s very common to
do taxonomy (or “lineage”) assignment, which means determining a sequences
domain, phylum, class, order, family, genus, and species.28

Taxonomy assignment requires comparing query sequences with a database of
sequences that already have taxonomies associated with them. For example,
the Greengenes database has taxonomies associated with all its OTUs.29 Thus,

2816S rarely has sufficient resolution to identify species, and it often lacks information to
determine placement at even higher levels. It is also worth noting that there are intermediate
ranks (like subclass).

29The last update of the Greengenes database was in 2013. Bioinformatic methods have
evolved since then, and the quality of the taxonomy assignments in the database is open to
question. Cf., e.g., Yokono, Satoh, Tanaka (doi:10.1038/s41598-018-25090-8).
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reference-based OTUs may automatically have taxonomies assigned to them.

Another popular method for taxonomy assignment is the Ribosomal Database
Project’s (RDP) naive Bayesian classifier.30 Rather than comparing a sequence
to existing OTUs, the RDP classifier breaks up the sequence into k-mers (all
subsequences of the original sequence that have length k) and compares the k-mer
content of that sequence to a database that links k-mer content to taxonomy.
The practical advantage to this approach is that it gives confidences to each
level of the taxonomic assignment. For example, a sequence might definitely
be from some phylum (99%), but it might be difficult to specify its class (80%)
and nearly impossible to identify its order (30%). In contrast, in the purely
reference-based approach, the same sequence might happen to hit an OTU that
is classified all the way down to the species, and you would mistakenly think
that your sequence had a lot of taxonomic information in it.

Regardless of how taxonomy assignment is performed, it is important to remember
that it is a distinct process from OTU calling. One can call OTUs without
assigning taxonomies, or one can actually call OTUs by grouping sequences that
are all assigned to the same taxonomy. Whether grouping sequences and doing
analyses by taxonomic groupings constitutes re-calling OTUs is a question of
semantics.

4.4.6 Distribution-based methods

The algorithms mentioned above mostly don’t take notice of how those sequences
are distributed among the samples. Preheim et al. (doi:10.1128/AEM.00342-13)
showed that you get OTUs that better reflect the composition of a known, mock
community if you take the sequence provenances into account. If an abundant
sequence and a sequence-similar, rare sequence are distributed the same way
across samples, the rare sequence is probably sequencing error and should be put
in the same OTU with the abundant one. Conversely, if two very similar sequence
are never found together, they probably represent ecologically-distinguishable
bacteria, so they should be kept in separate OTUs. This approach is called
ecologically-based (or “distribution-based”) OTU calling.

4.5 How many OTUs?
A pet peeve of mine is when someone asks “how many OTUs” were in some
sample. That number, on its own, means very little; it matters how the OTUs
were called. Asking “how many OTUs” is like asking how many kinds of books I
read last year. Do I answer “two”, for fiction and nonfiction? Or do I put each
book into its own category, because each one had its own author?

30Wang et al. (doi:10.1128/AEM.00062-07)
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Figure 8: Distribution-based OTU calling separates similar sequences if they are
distributed differently across samples. Adapted from Preheim et al.

5 Using QIIME 2
In previous versions of this primer, I encouraged readers to develop their own
scripts for 16S data processing. I did this in part because the two, most user-
friendly pipelines at the time, QIIME 1 and mothur, had characteristics that left
me very unsatisfied. The field was also younger, and the methodology was more
in flux, so it seemed wiser to get closer to the nuts and bolts of things. Now,
however, I enthusiastically recommend using QIIME 2 for 16S data processing.31

QIIME 2 has extensive and ever-improving online documentation. Rather than
repeat that material here, I will emphasize a few important points about working
with QIIME 2.

5.1 QIIME 2 consists of plugins
The QIIME 2 documentation describes it as a “decentralized microbiome analysis
package”. It is a collection of individual tools, called plugins, with common
interfaces. For example, there is a plugin called quality-filter that has a “method”
q-score that filters 16S sequences in a fastq file based on quality scores. Another
plugin vsearch has a method cluster-features-de-novo that does de novo OTU
clustering. Every step in the 16S analysis process maps onto a method in one of
the QIIME 2 plugins.

5.2 QIIME 2 packages data in artifacts
QIIME 2 methods do not run on human-readable data files like fastq’s and
fasta’s. Instead, those human-readable files need to be imported into QIIME
2 artifacts. This importing process compresses the original data and also adds

31The two important changes for me were the plugin system and advances in virtualization
software and virtual environment management.
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some helpful metadata, called a provenance, which tracks the history of what
methods have been run on a set of data.32 If you want to directly interact with
the data at any step in a QIIME 2 analysis, you will need to export it out of the
artifact format.

5.2.1 QIIME 2 runs in compartmentalized computing environments

A challenge with a complex software project like QIIME 2 is that its software
dependencies can conflict with other software dependencies. QIIME 2 avoids
these problems using the modern solution of compartmentalized environments,
either a virtual environment (via conda or a similar tool) or a virtual machine
(such as Docker). As a user, this may introduce a greater learning curve to figure
out how to initially install the software, but it will reduce downstream problems.

5.3 QIIME 2 still relies underlying algorithms and your
parameter choices

The plugin concept means that QIIME 2’s underlying algorithms are fairly
transparent. This does not mean, however, that everything that nothing that
QIIME 2 does will be surprising or, to put it bluntly, bad. QIIME 2 is only as
good as its underlying algorithms and the appropriateness of the parameters you
supply it.

For example, most pipeline software, QIIME 2 included, will allow many param-
eters to have default values. In many cases, these values will be appropriate for
your data. In others, they may lead to very different results. The onus is on you
as a researcher to understand the merit of the parameter values you selected,
even if you selected the default ones.

As a second example, some of the methods in QIIME 2 rely on the USEARCH
algorithm33 to match query sequences to database sequences, such as when
performing reference-based OTU calling. At the risk of making a mountain
of a molehill, I dive a bit into the details of USEARCH to demonstrate the
complexity that can underlie QIIME 2’s pleasant user interface.

USEARCH is an algorithm used to match query sequences to database sequences.
It is used, for example, to do reference-based OTU calling. One might expect
that, given the same input sequence and the same database, the algorithm would
also match that query sequence with the same database sequence. In fact, the
picture is a little more complicated.

Critically, USEARCH is a heuristic algorithm. This means that it applies
shortcuts to achieve faster speed:

1. Search for a match according to a decreasing expected sequence similarity.
32In the art world, provenance refers to the history of custody and ownership of a work

of art. A reliable provenance is an important part of how you determine if a work of art is
authentic.

33Edgar (doi:10.1093/bioinformatics/btq461)
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2. Use heuristics to speed up the sequence alignments.
3. Apply stopping criteria. The default is to stop after a single hit that meets

the accepting criteria.

The first shortcut means that your query sequence will be compared to database
sequences according to some order; the shortcut rule means that the first of
these database sequences that is a sufficiently good match to your query will be
delivered as the result. For example, if you are assigning your OTUs by making
a search to the 97% OTUs in Greengenes, then the first database sequence that
is at least 97% similar to your query will be considered its parent OTU.

The third shortcut would be of no concern if the comparisons were performed in
the order of decreasing sequence similarity, so that the first hit was always the
best one. However, USEARCH needs to somehow guess, ahead of performing
the actual alignment, which sequence in the database will be a good match to
the query sequence.

USEARCH guesses the sequence similarity between two sequences using the U
value (which is the U in USEARCH). U is the number of unique words shared
by two sequences. You get these words by looking for length w (default is 8)
subsequences starting at positions spaced µ apart. For example, if µ = 1, then
your words are all the w-mers in the sequence. If µ = w, then your words
are the first w nucleotides, the next w nucleotides, and so forth. Conveniently,
sensible values for µ are inferred using tables of optimal choices derived from
running USEARCH on databases of sequences using different values of the
identity threshold.

This heuristic selection of database entries for comparison can lead to some quirky
results, which I described in detail elsewhere.34 In short, even reference-based
OTU calling, which is expected to be stable and replicable, does not necessarily
produce the results you might a priori think it should. Entire sequences and
genera of bacteria can appear or disappear from your dataset depending on your
choice of parameters for USEARCH.

The take-away is that a user-friendly interface cannot make the underlying
algorithms user-friendly. The cutting edge is often sharp.

6 Parting wisdom
I hope this primer has given you exposure to fundamental concepts in 16S data
processing. To give you a sense of where to go from here, I have some parting
wisdom.

34Tsou et al. (doi:10.1080/19490976.2020.1747336)
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6.1 Become more computationally proficient
QIIME 2 and other tools do provide some visualization and analysis capability,
but if you want to deviate from the beaten path even a little bit, you will need
to develop your own computation skills.

The first key skill to learn is the Unix command line and the basic commands like
cat, cd, cp, ls, mkdir, mv, rm, head, less, sed (or awk), wc, grep, and vi (or
emacs). These tools will help you when looking at raw data, using computational
servers, or writing your own computer code.35

The second key skill is to learn a programming language with decent bioinfor-
matics and statistics packages. Python and R are good choices. As a Masters
student, after many years of fitfully using tools like Mathematica, I spent one
week reading and doing all the exercises in Mark Lutz’s Learning Python. It was
one of the best investments I’ve ever made.

6.2 Be a data and algorithm detective
The best tool in your belt is a curious attitude. Be critical of your data at every
step in the pipeline before you move onto the next step. Does it look the way you
expect? How can you check? You may save yourself from substantial headache
later on if you can catch bugs early in your analysis.

As mentioned earlier, processing 16S data requires many decisions, some small
and seeming inconsequential, like error thresholds, and some large, like the choice
of denoising algorithm of OTU picking method. Pipeline software like QIIME 2
can, through the setting of default values, create the illusion that some of these
choices are not important, or even that you didn’t need to make a choice. I only
want to emphasize again that, in 16S data processing, the devil can be in the
details.36

6.3 Get help
16S processing and analysis is a rapidly evolving and complex field. Even if
you do develop strong computational skills, it is very wise to collaborate with
experts.

Happy processing, and good luck!

35Maybe one day we’ll have sexy drag-and-drop, hologram-style data processing for 16S,
but for the foreseeable future it’s going to look like the scene in Jurassic Park where Samuel
L. Jackson is hunched over a computer muttering “Access main program. . . Access main
security. . . Access main program grid. . . ”

36Tsou et al. (doi:10.1080/19490976.2020.1747336)
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