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ABSTRACT 
 
Background: Antibiotics are a key part of modern healthcare, but their use has downsides, 
including selecting for antibiotic resistance, both in the individuals treated with antibiotics and in 
the community at large. When evaluating the benefits and costs of mass administration of 
azithromycin to reduce childhood mortality, effects of antibiotic use on antibiotic resistance are 
important but difficult to measure, especially when evaluating resistance that “spills over” from 
antibiotic-treated individuals to other members of their community. 
 
Main body: Mathematical models of antibiotic use and resistance may be useful for estimating 
the expected effects of different MDA implementations on different populations, as well as 
aiding interpretation of existing data and guiding future experimental design. Here, strengths 
and limitations of models of antibiotic resistance are reviewed, and possible applications of 
those models in the context of mass drug administration with azithromycin are discussed. 
 
Short conclusion: Statistical models of antibiotic use and resistance may provide robust and 
relevant estimates of the possible effects of MDA on resistance. Mechanistic models of 
resistance, while able to more precisely estimate the effects of different implementations of 
MDA on resistance, may require more data from MDA trials to be accurately parameterized. 
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BACKGROUND 
 
Mass drug administration (MDA) is the blanket treatment with antiinfectives of most people, or a 
select age group, in a target population like a settlement or an administrative region. MDA has 
been used for decades for control of parasites such as helminths and for control of bacteria 
such as Chlamydia trachomatis (1). In 2020, based on results from a few key interventional 
trials (2–4), the World Health Organization made a recommendation that “consideration be 
given” to using azithromycin MDA to prevent child mortality, without targeting a specific 
pathogen, but only in a narrow context. First, MDA should only be used in sub-Saharan African 
settings with certain minimum infant mortality rates. Second, mortality rates, adverse effects of 
MDA, and antibiotic resistance must be continuously monitored as MDA is used. Finally, other 
child survival interventions must be in place in addition to MDA. In these circumstances, the 
recommended treatment is 2 azithromycin doses per year only for children aged 1-11 months 
(5). 
 
Like any medical treatment, MDA has costs and benefits. Factors like the monetary cost of 
treatment and the risk of side effects must be weighed against the treatment’s therapeutic 
benefit (6,7). In the case of infectious diseases, costs and benefits must be weighed at the level 
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of populations as well as at the level of individuals. For example, treating a disease in an 
individual may create a population-level benefit by preventing onward disease transmission or 
by even eliminating a disease altogether (8). On the other hand, antibiotic therapy like MDA-
azithromycin can promote antibiotic resistance among bacteria in treated individuals, which in 
turn could “spill over” into untreated individuals (9,10). Thus, a comprehensive cost-benefit 
analysis of MDA-azithromycin requires quantifying the degree to which MDA will promote 
antibiotic resistance in the treated individuals, within their community, and across other 
communities. 
 
Ideally, clinical trials could fully characterize the effect of MDA-azithromycin on individual- and 
population-level antibiotic resistance. In practice, because of the complexity of bacterial 
transmission dynamics and the finite resources that can be devoted to clinical trials, there will be 
policy-relevant questions about the effect of MDA on resistance that cannot be directly 
addressed by empirical data (11,12). Fortunately, mathematical models can help bridge the gap 
between available empirical data and operational policy questions (13–15). For example, 
empirical studies had measured the rate at which individuals re-acquired C. trachomatis after 
MDA had presumably cleared the pathogen from them. Mathematical modeling was then used 
to infer the minimum frequency of MDA to eliminate C. trachomatis carriage across a wide 
population (16,17). Although the relationship between antibiotic use, such as MDA-azithromycin, 
and antibiotic resistance is likely more complex than the relationship between drug use and 
disease elimination, models of antibiotic resistance can be similarly employed to link available 
empirical data with policy questions. 
 
 
MAIN TEXT 
Challenges in predicting population-level antibiotic resistance from antibiotic use 
 
Hundreds of empirical studies have measured the association between antibiotic use and 
resistance (18). However, we still lack a definitive understanding of the relationship between an 
individual’s antibiotic use and the rates of antibiotic resistance in the wider population (14). This 
gap is due at least in part to the complex epidemiology of population-level antibiotic use and 
resistance. 
 
First, population-level resistance is not just the aggregate of individual-level resistance selected 
for by those individuals’ use of antibiotics. Instead, there is a complex interplay between 
individual-level antibiotic use and the transmission of susceptible and resistant bacteria (10,19). 
Resistance can “spill over” from treated individuals to their family members (20), and there is 
evidence for quantifiable spillover at larger scales (9,10,14). For example, spillover may be 
crucial to patterns of β-lactam resistance in S. pneumoniae, the pathogen and antibiotic class 
most studied in population-level studies of antibiotic use and resistance (18,21). The treatment 
of children with acute otitis media using penicillins has been observed to select for β-lactam 
resistance among S. pneumoniae that cause pneumonia in older adults (22). However, even in 
this well-studied case, the relationship between antibiotic use in one population and rates of 
resistance in another are poorly quantified. Although spillover plays some role following MDA, 
the quantitative magnitude of this effect is poorly understood and likely varies by geographic 
scale (9), by pathogen, and by antibiotic class (18,23). Better quantification of spillover could be 
critical to understanding the effects of MDA, as interactions between the MDA-treated 
population and a control population could lead MDA clinical trials to underestimate the effect of 
MDA on resistance (9). 
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Second, antibiotic resistance is not itself a pathogen; it is a feature of some members of a 
bacterial species. In some cases, when an antibiotic-resistant pathogen has minimal 
competition from the antibiotic-susceptible strains of the same species, conceptualizing 
“resistance” as a standalone pathogen is effective. For example, Donker et al. (24) evaluated 
the relevance of different geographical scales for the spread of carbapenem-resistant 
Enterobacteriaceae in the United Kingdom without explicitly accounting for any carbapenem-
susceptible strains. More generally, however, competition between resistant and susceptible 
strains of the same bacterial species is likely critical to successful modeling of the association 
between antibiotic use and resistance (14). 
 
Competition can occur within the human host, and recent models of resistance have 
demonstrated how this within-host competition can help explain a key feature of antibiotic 
resistance epidemiology, namely, the durable co-existence of antibiotic-resistance and -
susceptible strains of the same bacterial species (25). Competition also occurs between hosts: 
susceptibility and resistance both spill over between populations, with important implications for 
MDA (26). For example, rates of macrolide resistance among S. pneumoniae and E. coli carried 
by recipients of MDA-azithromycin increase substantially after treatment (1,27,28) but then 
appear to wane in the succeeding months (29,30). Although this waning could be partly due to 
intra-individual effects, population-level effects likely play an important role: susceptible strains 
in untreated individuals can be transmitted to antibiotic-treated individuals (19,31). 
 
Third, use of one antibiotic can select for resistance to other antibiotics, because the same 
resistance mechanism provides resistance to those other antibiotics (i.e., cross-resistance) or 
because one genetic element can include multiple genes that provide resistance against 
multiple antibiotics (i.e., co-resistance) (27,32). More broadly, the use on one antibiotic can 
select for resistance to another antibiotic simply because a single bacterial strain is resistant to 
both antibiotics, even if the two resistance mechanisms are not genetically linked (i.e., co-
selection) (33,34). 
 
Finally, all the foregoing phenomena —spillover, competition between susceptible and resistant 
strains, and co-selection— are likely highly contextual, depending on patterns of between-host 
transmission, heterogeneous patterns of background antibiotic use (35), and the prevalence and 
relative fitness of the susceptible and resistant strains circulating in and around the treated 
community (14). There is no guarantee that conclusions drawn from data collected in one 
context will be applicable in another context, especially when what precisely defines a distinct 
“context” remains unresolved. 
 
Statistical models of antibiotic use and resistance 
 
The saying goes: all models are wrong, but some are useful. A clearly “wrong” but parsimonious 
and potentially useful approach to the complex relationship between antibiotic use and 
resistance is to infer the likely effects of a change in antibiotic use, such as MDA-azithromycin, 
using cross-sectional patterns of population-level antibiotic use and resistance. In other words, 
in the absence of a complete understanding of the precise dynamics that relate population-level 
antibiotic use and resistance, one approach is to assume that the use-resistance associations 
observed in other contexts already incorporate these complexities (36) and then use those 
quantitative associations to predict the effects of MDA. 
 
To illustrate this approach, compare MDA-azithromycin with outpatient azithromycin use in the 
US. Azithromycin use among American children aged 0-2 years amounts to approximately 1 
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dose per year.1 Total US population-wide azithromycin use is approximately 700 doses per 
1000 population per year.2 Thus, if MDA-azithromycin were instituted in the US on top of 
existing antibiotic use, then rates of azithromycin use among American children aged 0-1 would 
triple, but total US azithromycin use would increase by less than 10%.3 For comparison, rates of 
population-wide macrolide use vary 2-fold across US states (23) and more than 10-fold across 
European countries (37). Thus, as a first approximation, the differences in macrolide resistance 
rates among US states and European countries might serve as an upper bound for the increase 
in population-level resistance that could be caused by MDA-azithromycin. 
 
Statistical modeling has at least three fundamental weaknesses. First, it assumes that the 
processes that relate inter-country or inter-state differences in antibiotic use to differences in 
resistance are the same processes that govern how a perturbation in antibiotic use, such as 
MDA-azithromycin, would affect antibiotic rates (38). In other words, the observed ecological 
use-resistance associations are assumed to be causal. 
 
Second, statistical models can only attribute differences in resistance to differences in use or to 
other population-level covariates such as socioeconomic factors (39). Statistical models are not 
designed to evaluate complex, mechanistic counterfactuals, such as whether different contact 
patterns could lead to different rates of antibiotic resistance in different subpopulations. 
Statistical models also cannot account for biological factors, unrelated to antibiotic use, that 
could drive changes in the prevalence of resistance (38). The effects of these biological factors 
can manifest as secular trends in disease activity or resistance prevalence that appear 
unrelated with secular trends in antibiotic use. For example, secular trends in the prevalence of 
trachoma have been suggested as explanations for differences in the effect of MDA on C. 
trachomatis carriage across clinical trials (8,29). At the level of cities or countries, secular trends 
in antibiotic resistance can be on the order of 5 percentage points of collected isolates per year 
(40–42). Smaller communities, like those targeted by MDA, might display different, and perhaps 
more rapid, dynamics that would likely not be accounted for in a straightforward statistical 
model. 
 
Finally, a statistical model can only be built for antibiotics and pathogens for which there are 
pre-existing data. While the effects of azithromycin use on macrolide resistance among S. 
pneumoniae and E. coli are fairly well studied (1,18,27,28), the effect of azithromycin use on 
resistance in other pathogens is poorly documented (43). Comparing use-resistance 
associations across pathogens and antibiotics (21,23,44) may help fill in some gaps, but this 
approach is now only speculative. 
 
The illustration above, comparing MDA-azithromycin with US azithromycin use, has many other 
weaknesses that could likely be ameliorated with more sophisticated statistical models. For 
example, the crude model above only considers a single pathogen and antibiotic. A more 
careful approach would account for, or at least evaluate, the effect of the use of multiple 
antibiotics (34,45,46). 

 
1 In 2011, children under 20 years old received 183 azithromycin prescriptions per 1000 population (74). 
Children under 2 received 48% more prescriptions than the average for all children 0-20, and a typical 
course of azithromycin is 3 or 5 days (23), yielding 813 or 1354 annual doses per 1000 children aged 0-2. 
2 In 2011, Americans received 174 azithromycin prescriptions per 1000 population (74). Assuming 3 or 5 
doses per prescription, this is 522 or 870 doses per 1000 population per year. 
3 If 4% of the population is under 1 year and MDA covers 80% of those children, then 2 doses per child 
per year amounts to 64 doses per 1000 overall population per year, compared to the baseline of 700 
doses per 1000 population per year. 
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Mechanistic models of antibiotic use and resistance 
 
Statistical models are likely useful for roughly estimating the absolute quantitative effect that 
MDA-azithromycin would have on population-level antibiotic resistance, but they cannot 
evaluate mechanistic questions or counterfactuals. Mechanistic models, on the other hand, 
make assumptions about the underlying dynamics that relate use and resistance. For example, 
a model might assume that a host can be colonized by only one strain of a bacterial species, 
either susceptible or resistant, while another model might assume that a host can be colonized 
by multiple strains at the same time. In either case, the model must specify factors like how the 
host immune system or antibiotic treatment will affect the colonizing bacteria. 
 
Mechanistic models have been used for decades to explore the link between antibiotic use and 
resistance (47,48). Through time, these models have developed greater theoretical soundness 
(25,49) and greater complexity, including metapopulations representing geographic populations 
(50), age groups (51), and non-human environmental and animal compartments (52). 
 
Mechanistic models could be adapted to evaluate the effect of antibiotic use in one population 
on resistance in another population (9) and then used for multiple study purposes. First, they 
could aid interpretation of MDA clinical trial data. For example, mechanistic models could 
identify factors that quantitatively explain the apparently disparate results in the MORDOR I 
study, in which MDA-azithromycin appeared to be more effective in reducing mortality in the 
Niger study population, compared to the populations in Malawi and Tanzania (53). Second, 
mechanistic models could aid future experimental design by assessing what trial designs and 
sample sizes (54) would most efficiently gather information about the effect of MDA on 
resistance. Third, mechanistic models could be used to estimate the effects of different MDA 
implementations, such as comparing blanket treatment of all children in an age group versus 
targeting smaller “core” groups (17), or to explore the effect of repeated treatments on efficacy 
and resistance (55). Finally, models could help estimate how other interventions, such as 
improvements in water, sanitation, and hygiene, would modulate MDA’s effects on antibiotic 
resistance. 
 
Mechanistic models of MDA-azithromycin would likely include three classes of hosts: first, the 
children treated with MDA; second, those children’s close contacts, such as family members 
and untreated children; and third, one or more further removed populations, such as other 
members of a settlement or the population of a larger administrative region (Figure). Depending 
on the specificity required from the model, it may be important to further subdivide these 
compartments to account for differing patterns of transmission and immunity (51). When 
modeling resistance among bacteria with environmental transmission routes, such as E. coli, it 
may be important to model environmental compartments, such as water sources (52). While a 
greater number of host classes and environmental compartments allows for a more fine-grained 
assessment of the effects of resistance, more complex models are more difficult to parameterize 
and more likely to be mis-specified. Greater precision does not necessarily entail greater 
accuracy. 
 
Contemporary models differ in their representation of the modeled bacteria (Figure). Some 
models include just two strains of the same species, one susceptible and one resistant (25); 
others track multiple sensitive and resistant strains, corresponding, for example, to S. 
pneumoniae serotypes (51,56,57). In some models, a host can be colonized by only one strain, 
although there is increasing recognition of the importance of within-host competition between 
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sensitive and resistant strains (14,25). More sophisticated bacterial dynamics, such as 
horizontal gene transfer, are beyond the scope of most contemporary modeling (14). 
 
Mechanistic models of disease transmission are typically agent-based (51,58) or compartmental 
(25,52,57,59). Agent-based models track individual people and the interactions between them, 
simulating bacterial transmission and changes in host colonization status. Compartmental 
models, on the other hand, track only each combination of host class and bacterial strain and 
assume that the individuals in each host class behave identically. While agent-based models 
allow for arbitrarily complex interaction networks and can straightforwardly simulate stochastic 
disease transmission trajectories, compartmental models are usually deterministic and more 
analytically tractable. For the purposes of modeling spillover resulting from MDA, compartmental 
modeling may be sufficient, for two reasons. First, the relevant transmission networks to be 
modeled might not be known to sufficient detail to merit the complexity of an agent-based 
approach. Second, uncertainty in model results may be due more to uncertainty in the input 
parameters rather than stochasticity in transmission chains. Thus, sensitivity analyses using 
deterministic models may be sufficient to faithfully characterize the possible range of model 
results, obviating the need to model stochastic disease trajectories with agent-based models. 
 
Every process in a mechanistic model must be accompanied by a quantitative parameter, and 
models of antibiotic use and resistance for MDA will have many classes of parameters (Table). 
In many cases, the selection of parameter values can be informed by empirical data. Contact 
rates between different populations have been estimated in industrialized countries using 
surveys, commuting flows, and contact tracing (60–62), which can provide at least a rough 
estimate of the same patterns in settings where MDA may be implemented. Antibiotic use rates 
and vital dynamics could be estimated using local surveys (53). Initial conditions could be 
informed by pre-MDA measurements of the prevalence of resistance in targeted communities. 
Bacterial clearance rates have been estimated for certain bacteria, especially S. pneumoniae 
(63–65). In practice, however, these data are not sufficiently precise to confidently fix model 
parameters. Instead, models are typically fit to pre-existing antibiotic use and resistance data 
using Bayesian methods like Markov chain Monte Carlo (25,57).  
 
To help quantify population-level effects of MDA, future MDA studies should measure rates of 
pathogen carriage and resistance to relevant antibiotics among individuals who are in the 
treated community but who are not treated themselves (5). Ideally, these studies would also 
collect genotypic and phenotypic information on pathogen isolates, such as full antibiotic 
susceptibility profiles (66), multilocus sequence typing, or even whole genome sequences. In 
combination with linked host metadata, such as treatment status, age, family relationships, and 
location of residence, these pathogen data would further aid modeling of pathogen carriage and 
transmission specifically in settings where MDA is relevant (67,68). 
 
Mechanistic modeling has important limitations. Population-level dynamics of resistance are 
complex, and models of resistance are not reliably predictive (14). For MDA, the number of 
model parameters is likely large relative to the number of independent sampling units (i.e., 
MDA-treated populations) with data available for study. Without assurance that the model 
structure accurately reflects the underlying dynamics of bacterial transmission and competition, 
or that the parameter values are faithful to the setting to be modeled, mechanistic models’ 
quantitative predictions should be regarded with healthy skepticism. Instead, mechanistic 
models should be used as conceptual tools to “help us systematically examine the implications 
of various assumptions about a highly nonlinear process that is hard to predict using only 
intuition” (69). 
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CONCLUSIONS 
 
There are many unknowns about the degree to which MDA selects for resistance, in whom, and 
at what cost. Future clinical studies can address some of these knowledge gaps. However, 
MDA studies cannot feasibly address the risk of resistance for every subgroup of patients 
(11,12). Mathematical modeling can help fill gaps in our knowledge using well-founded 
assumptions, especially if models are developed in coordination with decision-makers (70) and 
guided by well-formed experimental design options or authentic policy questions. 
 
As a humbling counterpoint, it is worth noting that even in well-resourced settings like the US or 
Europe, the costs and benefits of antibiotic use have not been rigorously quantified. In general, 
antibiotic use is considered inappropriate when less intensive antibiotic therapy —a lower dose 
of antibiotics, a shorter regimen, a more narrow-spectrum antibiotic, an antibiotic less likely to 
select for problematic antibiotic resistance, or even no antibiotic at all— is expected to have the 
same clinical benefit (71–73). If an individual patient will benefit from more antibiotics or 
stronger antibiotics, then those antibiotics’ effects on population-level antibiotic resistance are 
considered acceptable. This fact does not mean that a rigorous cost-benefit framework should 
not guide policy decisions about MDA-azithromycin, nor does it mean that we should not 
leverage all available data and methodologies, including modeling, to best estimate MDA’s 
benefits and costs. It only means that this rigorous evaluation will be a challenging and novel 
endeavor. 
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Table. Parameters likely required for mechanistic modeling of MDA using bacterial 
transmission mechanics. The identity of these parameters and their notation was drawn from 
recent mechanistic models of use and resistance (25,51,57). 
Parameter class Number of parameters Notes 

Transmission 
rates (β) 

N within-class and N-choose-2 
between-class, where N is the 
number of host classes 

Values depend on both host contact 
rates and probabilities of bacterial 
transmission per contact 

Antibiotic use 
rates (τ) 

1 per antibiotic and host class More parameters are required if 
antibiotic use is explicitly time varying 

Clearance rates 
(u) 

1 per bacterial strain Background processes of immunity or 
competition are assumed to clear 
bacteria from hosts 

Resistance costs 
(c) 

1 or 2 per resistant bacterial 
strain 

Resistant strains are assumed to have 
lower transmission rates or higher 
clearance rates, relative to susceptible 
strains 

Co-colonization 
parameters 

Varies depending on co-
colonization mechanisms 

E.g., the model in Davies et al. (25) 
requires a co-colonization efficiency (k) 

Initial conditions 1 per bacterial strain and host 
class 

Starting prevalence of each strain 

Vital dynamics Varies depending on 
demographic model 

Birth rates, migration rates, etc. 
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Figure. Conceptual schematic for a mechanistic model of MDA. There are three host 
classes, representing the MDA-treated children, their families, and the broader community. 
Members of each host class move between four colonization states: uncolonized (X), colonized 
by the sensitive bacterial strain (S), colonized by the resistant strain (R) or co-colonized (SR). 
Colonization dynamics in each host class can affect dynamics in other classes: children 
frequently exchange bacteria with their families (thick arrow) but less often with the broader 
community (thin arrow). 
 

 
 


