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Abstract

The work presented in this thesis investigates the relationship between the chirality of a

building block and the chirality of structures into which these building blocks assemble.

I present and use an existing single-site anisotropic coarse-grained potential for modeling

the interactions between ellipsoids, and I propose a novel algorithm for computing this

potential.

I introduce a building block, constructed from two sites interacting via the ellipsoidal

potential, which has an adjustable chirality. The topology of the low-lying minima, which

are all helical, inspired the investigation of a conformational subspace. Structures in this

subspace have a well-defined and continuous chirality. A family of right-handed building

blocks produces both right- and left-handed structures in this subspace, providing what

I believe is the first theoretical model of this type of ambiguous relationship between

building block and structure chiralities. Other building blocks constructed from these

ellipsoidal sites are discussed.

Finally, I propose a single-site anisotropic potential that models a torsional inter-

action. Combining this single-site potential with sites interacting via the Lennard-Jones

potential and an anisotropic Lennard-Jones-like potential produces membrane and ribbon

structures that resemble structures observed in experiments on chiral rod-like viruses.
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Chapter 1

Introduction

1.1 Coarse-grained simulations

Self-assembly, the process by which building blocks spontaneously arrange themselves

into a well-ordered structure,1 is a theme that has drawn significant attention in physics,2

biology,3–5 chemistry,6 materials science,7,8 and engineering.9 Molecular building blocks,

whose sizes are typically measured in angstroms, can be constructed using synthetic chem-

istry and their behavior modeled using quantum mechanical or classical atomistic poten-

tials. Microscopic building blocks, whose sizes are typically measured in micrometers, can

be modeled using classical simulations.10 The nanoscale, or mesoscopic, regime bridges

the divide between molecular and microscopic length scales.

Experiments that manipulate nanoscale objects use tools like optical tweezers,11 atomic

traps,12 and atomic force microscopy.13 Most of these techniques do not change the elec-

tronic structure of the objects, so there are no direct chemical changes in the manipulated

materials. On the other hand, these tools rely on forces that are too weak to be used

to handle macroscopic objects. Simulations treating nanoscale objects may similarly fall

between previous categories. Coarse-grained potentials ignore the fine-grained details of

individual atoms by grouping the simulated elements into building blocks that represent

the physical building blocks relevant to the self-assembly process. This approach has the

computational benefit of reducing the number of pairwise interactions that need to be

computed at each simulation step.

Coarse-graining is also conceptually powerful, since it redefines the basic unit of the

physical interaction. If individual atoms are indeed unimportant in a nanoscale inter-

action, then a theoretical model that starts at the level of the nanoscale building block

should be sufficient to reproduce the appropriate behavior. Coarse-graining, then, pro-

vides information about the minimal design elements the building blocks must have in
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order to reproduce observed behavior. For example, simulations have successfully modeled

liquid crystal molecules as uniaxial ellipsoids14 and rod-like colloids as spherocylinders.15

The choices made in formulating the building blocks typically mirror choices about the

level of detail that will be used to model their interactions. For example, removing solvent

molecules from a simulation requires the addition of an explicit depletion force.16,17

1.2 Chirality

There are notable isotropic forces in nature, including gravitation, electrostatics, and

the interactions between noble gas atoms.18 Nevertheless, the anisotropy of building

blocks and their interactions may be a key element in the design of the structures into

which those building blocks assemble.19,20 Using self-assembly to construct rationally

designed structures and materials requires a deep understanding of the relation between

the properties of the building blocks and the properties of the resultant structures.

Chiral building blocks, those that have a non-superposable mirror image, typically

have chiral interactions that cause the assembled structures to be right- or left-handed.21

The relationship between the chirality of building blocks and of the assembled structures

has been treated by experiments on a variety of systems.4,22–24 In Chapters 4 and 5 of

this thesis, I use the Paramonov-Yaliraki potential25 to model the interactions between

ellipsoidal sites in two- and four-site building blocks. The two-site building blocks have

a continuously adjustable chirality, and examining the chirality of a stable structure has

helped clarify a single mechanism by which some of the less well-understood aspects of

the relationship between the chirality of a building block and the chirality of a composite

structure can be understood. In Chapter 6, I introduce a potential that itself has con-

tinuously adjustable chirality and that can be used to model the structures of clusters of

rod-like viruses whose chirality can be continuously adjusted.24
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Chapter 2

Methods

2.1 The potential energy surface

A system of N nonlinear rigid bodies has 6N degrees of freedom, 3N translational and 3N

orientational. If a potential is associated with the system, the 6N variables describing the

system’s configuration also determine the system’s energy, U . The potential energy surface

(PES) is a 6N -dimensional surface in the (6N + 1)-dimensional space of configurational

coordinates and energy. The PES encodes all the information about the potential energy

of the system’s configurations.

The most interesting features of the PES are stationary points. A configuration,

represented by a vector x with 6N components, is a stationary point on the PES if

∂U(x′)

∂x′
α

∣∣∣∣
x′

α=xα

= 0 (2.1)

for all α. In one dimension, stationary points are classified as maxima, minima, or neither

depending on the sign of the second derivative. In higher dimensions, there is a matrix of

second derivatives, called the Hessian, H, whose entries are

Hαβ(x) =
∂2U(x′)

∂x′
α ∂x

′
β

∣∣∣∣∣
x
′=x

. (2.2)

A positive eigenvalue of the Hessian corresponds to the frequency of oscillation of the sys-

tem along the direction in configuration space specified by the corresponding eigenvectors.

Small perturbations of the system away from the stationary point along eigenvectors with

positive eigenvalues will produce small oscillations. A negative Hessian eigenvalue indi-

cates that the forces arising from U are non-restorative in the direction specified by the
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corresponding eigenvectors. Perturbations along these directions will cause the system to

fall away from a stationary point. The number of negative eigenvalues of the Hessian is

its index. Stationary points with Hessian index zero are local minima, those with Hessian

index one are transition states,26 and those with Hessian indices greater than one are

saddle points.27

2.2 Coarse-grained anisotropic potentials

2.2.1 Comparison of potentials

There are a number of potentials that model the interaction of anisotropic particles.

Although the Gay-Berne potential14 is the most well-known, it suffers from an opaque

parameterization, does not respond well to overlapping geometries, and applies ‘artificial

ordering forces’.25 Other anisotropic potentials, such as the elliptic contact potential,28,29

use the elliptic contact function (ECF), a measure of the relative separation and orien-

tation of two ellipsoids. Because the ECF is anisotropic at large distances, potentials

based solely on the ECF are unphysical in this limit. The Paramonov-Yaliraki (PY) po-

tential25 avoids the artificial forces of the Gay-Berne potential by using the ECF but is

also isotropic at large distances.

2.2.2 The elliptic contact function

The ECF is a scalar that characterizes the proximity of two ellipsoids. The shape and

orientation of an ellipsoid is encoded in a shape matrix

A =
3∑

i=1

a−2
i ui ⊗ ui, (2.3)

where the ui are orthogonal unit vectors pointing along the semiaxes of the ellipsoid, ⊗
is the dyadic product, and the ai are the lengths of the semiaxes. (In a simulation, A is

typically computed using A = RA′RT , where A′ is a diagonal matrix of the a−2
i and R

is a rotation matrix.) If the ellipsoid’s center is at r, then the ellipsoid consists of all the

points x for which

1 = A(x) ≡ (x− r)TA(x− r). (2.4)

Given a second ellipsoid with quadratic form B and defining the object function

S(x, λ) = λA(x) + (1− λ)B(x), (2.5)
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the ECF is

F (A,B) = max
λ

min
x

S(λ,x). (2.6)

The minimization over x can be carried out analytically, as the value of x that minimizes

S(λ,x) for a given λ is

x(λ) = [λA+ (1− λ)B]−1 [λAr + (1− λ)Bs] , (2.7)

where s is the second ellipsoid’s position. For this reason, S(λ,x) is also written as

S(λ) ≡ S (λ,x(λ)) so that the ECF can be reduced to a single optimization

F (A,B) = max
λ

S(λ). (2.8)

Although this approach is geometrically meaningful, it is simpler to compute the ECF

using an equivalent formulation of the object function

S(λ) = λ(1− λ)rT
AB

[
(1− λ)A−1 + λB−1

]−1
rAB, (2.9)

where rAB = r − s is the vector separating the centers of the ellipsoids.29 Typically

the value λc, called the contact parameter, that minimizes S(λ) is computed using an

optimization algorithm to maximize S(λ) as in equation (2.9). I present a novel method

for computing the ECF in Section 3.1.

The ECF provides the scaling that will make the two ellipsoids externally tangent:

the ellipsoids A(x) = F (A,B) and B(x) = F (A,B), which are rescaled versions of the

original ellipsoids A(x) = 1 and B(x) = 1, meet at the contact point xc = x(λc). Thus,

F (A,B) = A(xc) = B(xc). (2.10)

This provides a simple interpretation of the value of F : if F = 1, the two ellipsoids are

externally tangent; if F < 1, the two ellipsoids overlap; and if F > 1, then the two

ellipsoids are not in contact. Also, because x(0) = s and x(1) = r, the value of λc is

restricted to the interval [0, 1].

The ECF provides an approximation of the distance of closest approach between two

ellipsoids, which is d = min |xA−xB| subject to the constraint that A(xA) = B(xB) = 1.

For d > 0, this distance is bounded above by the directional contact distance,

dR = rAB

(
1− 1√

F (A,B)

)
, (2.11)
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A(x) = 1

B(x) = 1

rAB

dR
d

Figure 2.1: Two ellipsoids whose centers are separated by rAB (black line) have a distance
of closest approach d (red line) which is approximated by dR (blue line), the distance of
closest approach that is parallel to the intercenter separation.

which is the distance of closest approach between the two ellipsoids with the further

constraint that xA−xB must be parallel to r−s (Figure 2.1). When two ellipsoids are in

contact, both d and dR vanish, but when the ellipsoids overlap, d remains zero while dR

becomes negative. At separations rAB much larger than the ellipsoids’ semiaxis lengths,

the difference between the values rAB, d, and dR becomes small compared to rAB.

2.2.3 The Paramonov-Yaliraki potential

Each PY site consists of two concentric ellipsoids, one repulsive and one attractive, which

modulate the interactions between sites. The pairwise energy of PY sites is Lennard-

Jones-like: the repulsive contribution depends on the distance of closest approach between

the repulsive ellipsoids of the two sites, and the attractive contribution similarly depends

on the distance between the attractive ellipsoids. The pairwise energy for two sites is

U = 4ǫ0



(

σ0

d
(rep)
R + σ0

)12

−
(

σ0

d
(att)
R + σ0

)6

 , (2.12)

where ǫ0 is an energy scale, σ0 is a length scale, and dR is the directional contact distance

between the relevant ellipsoids. At large separations, dR is similar to rAB, so the PY

potential is isotropic with respect to the orientations of the two ellipsoids in this limit.

The individual PY sites are parametrized by the shapes of the repulsive and attractive

ellipsoids, which are described by the three repulsive semiaxes, a1i, and the three attractive

semiaxes, a2i, that are used to construct the ellipsoids’ shape matrices. The form of the

6

figs/contact.ps


−1

0

1

2

3

4

−3 −2 −1 1 2 3 4

U/ǫ0

dR

Figure 2.2: The PY potential25 for the special case where the directional contact distances
between the repulsive and attractive ellipsoids are equal. The directional contact distance
dR is in absolute units. Red line: σ0 = 1, blue line: σ0 = 2, black line: σ0 = 10.

PY potential is shown in Figure 2.2 for the special case where d
(rep)
R = d

(att)
R . In this thesis,

the semiaxes a1i and a2i are reported in absolute units. As a consequence, dR and σ0 are

also shown in absolute units. The figure shows that as σ0 is increased, the potential has

a longer range and is softer: the external (dR > 0) minimum moves further away from

dR = 0 and the curvature at this minimum becomes less sharp. The figure also shows the

artificial internal (dR < 0) minimum for σ0 = 1. The internal minimum exists for larger

σ0, but it lies at more negative dR. If σ0 is sufficiently large compared to the semiaxes

of the interacting ellipsoids, then dR will never become negative enough to sample this

internal minimum. A simulation can also avoid sampling this minimum by performing a

check on the ECF. If F < 1 for some pair of ellipsoids after a change in the configuration

of the system, then those two ellipsoids overlap, and that configurational change can be

rejected or amended.

The richness of the PY potential is due in part to its separate parameterization of the

repulsive and attractive ellipsoids. In general, the constituent ellipsoid, whether repulsive

or attractive, which extends further along a given direction from the ellipsoids’ common

center will determine the behavior of the interaction along that direction. For example, if

a site has a repulsive ellipsoid that protrudes along the equator and an attractive ellipsoid

that points out at the poles, the sites will prefer to stack pole-to-pole. When a PY site is

depicted in this thesis, the repulsive ellipsoid is shown.30

A method for cutting off the PY potential’s interaction at a surface of constant po-

7
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tential is included in Section 3.2.

2.3 Identifying minima on the PES

Choosing a potential and a system of building blocks produces a PES. Because minima

lie at the ‘bottom’ of local areas of the PES, they are easy to find: proceeding ‘downhill’

from almost any point on a well-behaved PES will lead to a local minimum. This mini-

mization, along with the attendant computation of the potentials, is typically the most

computationally expensive part of a simulation that samples the PES, so it is important

to use the most efficient algorithm possible.

Although there are exact solutions to certain specific minimization problems, most

minimization algorithms are iterative, meaning that they produce a series of coordinates

that hopefully converge to the desired minimum.31 Iterative methods divide into three

groups based on the input they require to minimize a function f . The first group of

algorithms only require the function f as input. Algorithms in the second group require f

and its gradient f ′,32 and those in the third group require f , f ′, and the Hessian f ′′. The

analytical form of the gradients of all the potentials used in this thesis are known, but

algorithms involving the Hessian tend to be inefficient,33 so all simulations here have used

an iterative gradient method, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) algorithm.34,35 Like other quasi-Newton methods, the L-BFGS algorithm creates

a sequence of approximate Hessian matrices from the function and gradient data. Our

version of the algorithm uses a modified step length scaling which is more efficient than the

line searches used in the original algorithm.36 Among the gradient methods, the L-BFGS

algorithm is very efficient.37,38

2.4 Global optimization using basin-hopping

In many applications, from finance to operations to physics, it is important to find the

low-lying minima of a multivariate function.31 In chemistry, the low-lying minima on the

free energy surface will host the greatest populations when the system has equilibrated.

At zero temperature, the global minima on the PES and the free energy surface coincide,

so the low-lying minima on the PES provide approximate information about the struc-

ture and thermodynamics of the modeled system.39,40 Under the right circumstances,

a minimizer like the L-BFGS algorithm finds a single minimum given a single starting

point. The behavior of the minimizer is purely local, so the minimizer alone is incapable of

global analysis of the PES. To find global properties of the PES, most notably the identi-
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ties of the low-lying minima, the minimizer must be combined with a global optimization

routine.

Global optimization methods divide into two broad categories, exact and heuristic.41

Exact, or deterministic, methods find a local minimum of the input function and produce

a certificate that guarantees that this minimum is the global minimum. Because locating

the global minimum on a general PES is an NP-hard problem,42 exact methods that use

no a priori knowledge of the PES are computationally expensive. Heuristic, or stochastic,

methods produce local minima but without any guarantee that any one of these minima is

the global minimum. Heuristic methods are more likely to find the global minimum if they

are biased toward producing structures that include the global minimum.41 Useful biases

must be different for each system, and biasing strategies can make the global minimum

more difficult to find if the strategy is formulated incorrectly. Notable unbiased heuristic

global optimization methods include genetic algorithms,43 simulated annealing,44 taboo

search,45,46 landscape paving,47 and deformation methods.48,49

All the simulations in this thesis used the basin-hopping hypersurface transformation

method.50,51 In this method, a transformed landscape Ũ is obtained from the PES U by

local minimization such that

Ũ(x) = U [locmin(x)] , (2.13)

where locmin(x) returns the coordinates of the local minimum obtained from a local

minimization with starting coordinates x. The energy of each point x on Ũ is the energy

of its local minimum locmin(x) on U , so the landscape is transformed from a smooth

undulating surface to a series of plateaus (Figure 2.3). If x is a local minimum on U , then

U(x) = Ũ(x).

This hypersurface transformation must be combined with a global optimization method

to sample the transformed surface. The simulations in this thesis were produced using a

Monte Carlo52 (MC) routine that proposes steps along the untransformed surface U and

accepts or rejects the moves based on the change in energy on the transformed surface Ũ .

The routine is:

1. Start from a local minimum xn on U .

2. Perturb xn to a new position x′. These perturbations are designed to be unbiased

and to be large enough so that locmin(x′) might be distinct from x.

3. If

(a) Ũ(x′) < Ũ(xn) or

9
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Figure 2.3: A schematic energy landscape U (thin line) and the landscape Ũ (thick lines)
obtained by the basin-hopping hypersurface transformation defined in equation (2.13).

(b) Ũ(x′) > Ũ(xn) and exp
{[

Ũ(xn)− Ũ(x′)
]/

T
}
> X, where T ≥ 0 is a tem-

perature parameter and X is a random number drawn from the continuous

uniform distribution between 0 and 1,

then accept the MC step by starting a new cycle with xn+1 ← locmin(x′). Other-

wise, reject the MC step by generating a new x′ from xn.

In simulations of systems of rigid bodies, x′ is produced by separately perturbing the

translational and orientational parts of the coordinates of each rigid body (Figure 2.4).

The basin-hopping MC routine and all the attendant potentials used in this thesis are

included in the software package GMIN.53

2.5 Visualizing the PES using disconnectivity graphs

It is not feasible to visualize the PES with a straightforward graph of U since the number

of coordinates, 6N , is too large. Such a graph, if it could be produced, would also not

help the viewer identify low-lying minima or determine how the minima are connected.

These two pieces of information can be handily combined in a disconnectivity graph.

A disconnectivity graph is produced through ‘superbasin’ analysis.54 For some energy

E, the minima on the PES can be grouped into superbasins. Two minima are in the same

superbasin if there is a path on the PES that connects them and which never exceeds the

energy E. Two minima are in different basins if every path on the PES that connects

them has at least one point whose energy exceeds E. A disconnectivity graph consists of

10
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a) b)

Figure 2.4: MC perturbations made to each rigid body in a simulated system. a) The
rigid body’s position (red dot) is perturbed to a new position (e.g., any one of the black
dots) distributed uniformly inside a specified radius (gray sphere). b) The rigid body’s
orientation (red arrow) is perturbed to a new orientation (e.g., ending on any one of the
black dots) distributed uniformly on a spherical cap (gray surface).

a series of nodes corresponding to the superbasins at a series of discrete energies Ei. A

node at energy Ei is connected to a node at energy Ei+1 if the minima in the superbasin

represented by the Ei node are also in the superbasin represented by the Ei+1 node.

If the Ei are chosen properly, the bottom of a disconnectivity graph shows individ-

ual minima on the PES. The global minimum is represented by the lowest node on that

graph. If the PES has no infinite barriers, the top of the graph will consist of a single line

that represents the superbasin that contains all the minima on the PES. Self-assembling

systems probably have disconnectivity graphs with ‘palm tree’ motifs55 (Figure 2.5). Sys-

tems with palm tree disconnectivity graphs suffer no significant traps that would prevent

the system from relaxing to a global minimum relatively quickly.

The superbasin analysis as described would require exhaustive sampling of the PES,

which is not computationally feasible. In practice, the disconnectivity graph is constructed

using the Murrell-Laidler theorem,26,56 which states that if two local minima have a

connecting path that runs through a saddle point with index two or greater, then there is

another path that runs only through transition states. The theorem also states that the

maximum energy along this path is lower than the maximum energy along the original

path. Thus, a disconnectivity graph can be assembled by identifying the transition states

that connect pairs of minima generated during a heuristic global optimization routine. If

the energies of transition states that connect two minima are each less than E, then those

two minima are part of the same superbasin for E.

The routines for identifying minima and transition states and assembling them into

databases are included in the software packages OPTIM57 and PATHSAMPLE.58
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Figure 2.5: Schematic energy landscapes (left) and the corresponding disconnectivity
graphs (right) produced using superbasin analysis at the energies marked by dashed
lines.27 a) In a ‘palm tree’ motif, there are low downhill barriers toward the global
minimum, which is well separated in energy from other minima. b) In a ‘willow tree’
motif, there are larger downhill barriers. c) In a ‘banyan tree’ motif, the barrier heights
are much larger than the energy difference between minima, and the global minimum is
not well separated in energy from other low-lying minima.
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Chapter 3

Novel methods

3.1 Casting the elliptic contact function as a polynomial root-

finding problem

3.1.1 Introduction

The elliptic contact function (ECF) of two ellipsoids is

F = {max S(λ)|λ ∈ [0, 1]} , (3.1)

where

S(λ) = λ(1− λ)xT [(1− λ)A+ λB]−1
x, (3.2)

where in this chapter A and B are the inverses of the shape matrices of the two ellipsoids

in the lab frame and x is the vector separating the centers of these ellipsoids. This

expression apparently depends on λ in a complicated way, and the standard method

for finding the contact parameter λc that minimizes S is to plug equation (3.2) into an

optimization routine that does not require a gradient or Hessian (e.g., Brent’s method59).

A brute force expansion of equation (3.2) shows that S(λ) can be written as a rational

function. The term λ(1 − λ) contributes a second-order polynomial to the numerator,

while the inverse matrix contributes a second-order polynomial to the numerator and a

third-order polynomial to the denominator. Thus,

S(λ) =
f(λ)

g(λ)
=

∑4
i=1 fiλ

i

∑3
i=0 giλ

i
, (3.3)

where the fi and gi are functions of A and B and do not depend on λ. (In this chapter,

λi means λ to the i-th power.)
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This reformulation shows that maximizing the matrix quantity in equation (3.2) is

equivalent to maximizing the rational function in equation (3.3). Because S(λ) is rational,

the derivative dS/dλ = S′(λ) is also rational. Maximizing S(λ) is therefore equivalent to

finding the root of the numerator of S′(λ). Finding the root of a polynomial over the

range [0, 1] is, in some ways, an easier problem than maximizing the matrix quantity in

equation (3.2).

Some simple calculus shows that the numerator of S′(λ) is a sixth-order polynomial.

Let this polynomial be called h(λ) =
∑6

i=0 hiλ
i, where the hi are functions of the fi and

gi. Because h(λ) is just a polynomial, its analytical derivative is easy to calculate, and

Newton’s method is an efficient approach to find the root of h(λ). The position of this

root is the contact parameter λc. Once λc is found, it is a simple matter to compute

F = S(λc).

When using Brent’s method and the matrix formalism to find λc for the simulations

described in this thesis, about 10 iterations were required to compute λc to within 10−6.

Computing the polynomial coefficients constitutes a higher overhead, but the cost of each

iteration is lower. Newton’s method also requires fewer steps, and in most cases less than

5 iterations were required to find the root of h(λ). Altogether this improvement has led to

a 1.5 times speedup for the computation of the entire PY potential for all but the smallest

systems.

In this section, I will derive expressions for the coefficients fi, gi and hi and demonstrate

that the intermediate quantities used to compute the coefficients have certain properties

that simplify the computation of the coefficients.

3.1.2 Coefficients of S

The fi and gi depend on A and B in a complicated way. Writing expressions for these

coefficients requires a careful consideration of the properties of A and B, the cofactor

matrices of A and B, and another matrix C̃ that mixes these cofactor matrices. In

this subsection, I will derive expressions for the entries of A, B, the cofactor matrices

of A and B, and C̃. Next I will define some auxiliary quantities A∗, B∗, and C∗ using

these matrices. The coefficients of S can be compactly written in terms of these auxiliary

quantities.

Inverse shape matrices

Let the two shape matrices in their diagonal representations be A′ and B′. Let the

rotation matrices be R and S such that the shape matrices in the lab frame are RA′RT

14



and SB′ST . Then the inverse shape matrix in the lab frame is

A =
(
RA′RT

)−1
(3.4)

=
(
RT
)−1

A′−1
R−1 (3.5)

= RA′−1
RT (3.6)

Aij =
∑

m

A′−1
mmRimRjm. (3.7)

Note that detA = (detA′)
−1

and A = AT . These results also hold for B.

Cofactor matrices

The cofactor of the (i, j)-th entry of the matrix A is (−1)i+jMij, where Mij is the de-

terminant of the submatrix obtained by removing the i-th row and j-th column from A.

The determinant of A can be written

detA =
∑

i

AijMij (3.8)

for any j, and the inverse of A is

A−1 =
Ã

T

detA
, (3.9)

where Ã is the cofactor matrix for A. The entries in the cofactor matrix are the cofactors

of the corresponding entries of the original matrix. BecauseA is a 3×3 matrix, its cofactor

matrix is easy to compute:

Ãij = Ai+1,j+1Ai+2,j+2 − Ai+2,j+1Ai+1,j+2 (3.10)

=
∑

mn

A′−1
mmA

′−1
nn

(
Ri+1,mRj+1,mRi+2,nRj+2,n (3.11)

−Ri+2,mRj+1,mRi+1,nRj+2,n

)
(3.12)

=
∑

m

A′−1
m+1,m+1A

′−1
m+2,m+2RimRjm, (3.13)

where index addition is modulo 3 (e.g., Ai,3+1 ≡ Ai,1) and I have used the fact that the

rotation matrixR is equal to its own cofactor matrix. In this form, it is clear that Ã = Ã
T

and similarly B̃ = B̃
T
. These symmetries simplify the implementation of the algorithm.
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Define also the matrix C̃ with entries

C̃ij = (Ai+1,j+1Bi+2,j+2 − Ai+1,j+2Bi+2,j+1)

+ (Bi+1,j+1Ai+2,j+2 −Bi+1,j+2Ai+2,j+1) .
(3.14)

Note that the first bracketed term would be Ãij if the B’s were replaced with A’s, and

that the second term is the same as the first but with the A’s and B’s reversed, so C̃ is

a matrix that mixes the cofactor matrices of A and B. Using the equations for Aij and

Bij, one can find that

C̃ij =
∑

mn

A′−1
mmB

′−1
nn × (four terms of form RRSS) . (3.15)

When written in this form it is straightforward to identify the terms that are symmetric

under exchanges i↔ j and m↔ n and thereby show that C̃ = C̃
T
.

Because Ã and B̃ are functions of the parameters of a single ellipsoid, those matrices

can be computed once per ellipsoid at the beginning of an analysis of a given configuration

of ellipsoids. The matrix C̃ depends on A and B together, so C̃ must be computed for

every pair of ellipsoids.

Expressions for fi and gi

Define also

A∗ = xT Ãx =
∑

ij

xixjÃij (3.16)

and similarly define B∗ and C∗. By brute force expansion of S in equation (2.9), it can

be shown that the numerator of S has coefficients

f1 = A∗ (3.17)

f2 = −3A∗ + C∗ (3.18)

f3 = 3A∗ + B∗ − 2C∗ (3.19)

f4 = −A∗ − B∗ + C∗. (3.20)

For the denominator define

D∗ =
∑

ij

AijB̃ij (3.21)

E∗ =
∑

ij

BijÃij . (3.22)
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(D∗ is called the Frobenius inner product of A and B̃.) The coefficients of the denominator

of S are then

g0 = detA (3.23)

g1 = −3 detA+ E∗ (3.24)

g2 = 3detA+D∗ − 2E∗ (3.25)

g3 = − detA+ detB −D∗ + E∗. (3.26)

3.1.3 Coefficients of S′

Straightforward differentiation of the rational expression for S shows that the numerator

of S′ has coefficients

h0 = f1g0 (3.27)

h1 = 2f2g0 (3.28)

h2 = 3f3g0 + f2g1 − f1g2 (3.29)

h3 = 4f4g0 + 2f3g1 − 2f1g3 (3.30)

h4 = 3f4g1 + f3g2 − f2g3 (3.31)

h5 = 2f4g2 (3.32)

h6 = f4g3. (3.33)

The derivative of h(λ) =
∑6

i=0 hiλ
i is simply h′(λ) =

∑6
j=1 jhjλ

j−1. Applying Newton’s

method to find the root of h′ is straightforward. However, Newton’s method often moves

outside the range [0, 1] in which the root λc must lie. In my implementations, I substitute

a bisection step when Newton’s method attempts to move to a position outside the range

of possible solutions.

3.1.4 Special case: A′ = B′ with two equal eigenvalues

If A′ = B′ and two of the diagonal elements of A′ are equal, then the term g3 vanishes.

This special case arises frequently, since the ellipsoids used in simulations are often el-

lipsoids of revolution, which have two equal semiaxes. Furthermore, once g3 vanishes,

then h6 vanishes, so the root-finding algorithm needs to compute a fifth- rather than a

sixth-order polynomial in this case. The proof that g3 vanishes under these circumstances

is laborious but not complex.

If A′ = B′, then detA = detB, so the first two terms of g3 cancel, leaving −D∗+E∗.
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To show that D∗ = E∗, rewrite D∗ as

D∗ =
∑

ij

(
∑

m

A′−1
mmRimRjm

)(
∑

n

B′−1
n+1,n+1B

′−1
n+2,n+2SinSjn

)
(3.34)

=
∑

mn

A′−1
mmB

′−1
n+1,n+1B

′−1
n+2,n+2

(
∑

i

RimSin

)(
∑

j

RjmSjn

)
(3.35)

=
∑

mn

A′−1
mmB

′−1
n+1,n+1B

′−1
n+2,n+2

[(
RTS

)
mn

]2
. (3.36)

Similarly,

E∗ =
∑

mn

B′−1
mmA

′−1
n+1,n+1A

′−1
n+2,n+2

[(
STR

)
mn

]2
(3.37)

=
∑

mn

B′−1
mmA

′−1
n+1,n+1A

′−1
n+2,n+2

[(
RTS

)
nm

]2
. (3.38)

Since A′ = B′, the only difference between D∗ and E∗ is the order of the subscripts in

the last term.

Now because two eigenvalues of A and B are equal, set (without loss of generality)

A′
11 = A′

22. ThenD∗ and E∗ consist of three groups of terms: ones proportional to
(
A′−1

11

)3
,

to
(
A′−1

11

)2
A′−1

33 , and to A′−1
11

(
A′−1

33

)2
. These groups occur for mn: 13, 23; 11, 22, 33, 12, 21;

and 31, 32 respectively. Swapping m↔ n swaps the first and last group of A′ and B′ but

leaves the middle group unchanged. Thus, swapping m↔ n in the sum requires that the

indices on the A′ and B′ also be swapped, bringing them back to their original places.

Thus, each term in the D∗ and E∗ sums are equal, so D∗ = E∗ and g3 = 0.

3.2 Cutoffs for the PY potential

Because the PY potential is both position- and orientation-dependent, it is inappropriate

to cut off the potential using the intercenter distance alone. This formulation can produce

discontinuities in a simulation using periodic boundary conditions, since there are situa-

tions in which one image of an interacting ellipsoid has the minimum intercenter distance

but not the minimum directional contact distance to the other interacting ellipsoid.

It is useful to rewrite the PY potential as U = Urep + Uatt, where

Urep = 4ǫ0G
−12
rep (3.39)

Uatt = −4ǫ0G−6
att (3.40)
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and Grep =
[
d
(rep)
R + σ0

]/
σ0 as in equation (2.12). A potential with a Stoddard-Ford-

like60 cut off is then

Urep = 4ǫ0

{
G−12

rep +G−12
c

[
6

(
Grep

Gc

)2

− 7

]}
, (3.41)

Uatt = 4ǫ0

{
−G−6

att +G−6
c

[
−3
(
Gatt

Gc

)2

+ 4

]}
, (3.42)

where Gc is the cut-off value for G. The gradients are

U ′
rep = 48ǫ0

(
−G−13

rep G′
rep +G−14

c GrepG
′
rep

)
, (3.43)

U ′
att = 24ǫ0

(
G−7

attG
′
att −G−8

c GattG
′
att

)
. (3.44)

The derivatives of G can be computed from the derivatives of rAB and F , which are

known.25,61 In this modified potential, Grep and Gatt reach zero smoothly at Gc.

It is usually more natural to define a cutoff distance dc, and this can be easily converted

to Gc(dc) = (dc + σ0) /σ0. When Grep = Gatt, the potential reaches a fraction α of its

minimum value at a directional contact distance

(
α−1/6 − 1

)
σ0. (3.45)

For example, dc ∼ 1.2σ0 would cut off the potential at the surface where the absolute

value of the potential had originally fallen to 1% of its minimum value.

3.3 General method for transforming site-site orientational gra-

dients to rigid body gradients

3.3.1 Introduction

In coarse-grained modeling, it is common to construct rigid bodies from sites whose pair-

wise interactions are known. Rigid bodies of LJ sites have been used to model ortho-

terphenyl.62 The Stockmayer particle, used in fluid models, consists of a LJ site and a

dipole site.63,64 Helix-forming ‘dumbbell’ building blocks are constructed from two LJ

sites and a dipole.65 Building blocks of PY ellipsoids and LJ sites have reproduced chiral

clusters and capsid-like structures.66,67 DNA can be modeled by a building block with

one site for the backbone and one site for the base.68

More complex models might require multiple sites whose positions and orientations

differ from those of the entire rigid body. In order to perform simulations using these
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building blocks, it is necessary to transform the gradients of the potential with respect to

the coordinates of the interacting sites into gradients with respect to the coordinates of

the two rigid bodies. As will be reiterated here, transforming the translational gradients is

trivial. Furthermore, in most cases, the orientational gradients can be transformed using

properties specific to the potential. Here I provide a general method for transforming

site-site orientational gradients to body-body gradients without any appeal to the form

of the potential.

3.3.2 Definitions and notation

A rigid body I has a position rI and angle-axis rotation pI . In the angle-axis framework,

the orientation of the body I is described by pI : the body is transformed from some

reference geometry to its lab frame orientation by rotating the body about the unit vector

p̂I through an angle
∣∣pI
∣∣. Although pI is sometimes called the angle-axis vector, pI is

not a vector in the proper sense, since simply adding the components of two angle-axis

rotations is not equivalent to concatenating the two rotations they describe. Each pI

corresponds to a rotation matrix RI .

Body I consists of sites i, each with molecule frame position ri0, molecule frame angle-

axis rotation pi0, and molecule frame rotation matrix Ri0. Each site also has lab frame

position ri, lab frame angle-axis rotation pi, and lab frame rotation matrix Ri. Two rigid

bodies I and J have a pairwise energy U IJ that is the sum of the site-site energies U ij

over all sites i in body I and all sites j in body J .

In accordance with previous work,61 RI
ν ≡ ∂RI/∂pIν . In accordance with typical usage,

Rαβ refers to the entry of the matrix R in row α and column β. The use of bold-face

should make this use of notation unambiguous: RI and RI
ν are both matrices, but RI

αβ is

an entry of RI and pIν is a component of pI . I use the Einstein summation convention for

matrix and vector indices. The metric is the identity in these cases, so upper and lower

indices have no particular meaning.

3.3.3 Radial terms

The center-of-mass forces just add up, so

∂U IJ

∂rI
=
∑

i∈I

∑

j∈J

∂U ij

∂ri
. (3.46)
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Since U IJ = UJI and U ij = U ji, it follows that

∂U IJ

∂rJ
=
∑

i∈I

∑

j∈J

∂U ij

∂rj
. (3.47)

In most cases where the potential Uij does not depend on a bond angle, we can avoid

computing the derivatives with respect to rj because

∂Uij

∂rj
= −∂Uij

∂ri
. (3.48)

3.3.4 Orientational terms

The orientational terms have contributions from both the site-site radial gradients and

the site-site orientational gradients, since

∂U IJ

∂pIν
=
∑

i∈I

∑

j∈J

∂U ij

∂pIν
(3.49)

=
∑

i∈I

∑

j∈J

(
∂ri

∂pIν

∂U ij

∂ri
+

∂pi

∂pIν

∂U ij

∂pi

)
. (3.50)

The derivatives of U ij are the site-site gradients that can be computed from each individual

potential. This leaves the derivatives of the site coordinates ri and pi with respect to the

body orientational coordinates pI .

Contributions from site-site radial terms

Previous work61 has shown that

ri = rI +RIri0 =⇒ ∂ri

∂pIν
= RI

νr
i0. (3.51)

Methods for computing the rotation matrix derivative RI
ν are given in the same publica-

tion.

Contributions from site-site orientational terms

In the simplest case, the site and the molecule have the same orientation so that pi = pI ,

and ∂pi/∂pI in equation (3.50) is just the identity. However, if the site has some nonzero

orientation pi0 in the molecule frame, then the derivative can be broken down by appealing
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to the entries of the rotation matrices Ri that correspond to the relevant rotations pi:

∂piµ
∂pIν

=
∂piµ
∂Ri

αβ

∂Ri
αβ

∂pIν
. (3.52)

The value of this approach is that it allows the second term ∂Ri/∂pI to be written in

terms of known values. The lab frame rotation matrix for site i is Ri = RIRi0, where

Ri0, the molecule frame rotation matrix for site i, is constant. Thus,

∂Ri
αβ

∂pIν
=
(
RI

νR
i0
)
αβ

. (3.53)

This matrix can be found by computing the matrix product of the rotation matrix deriva-

tive for the body, RI
ν , and the body frame rotation matrix for the site, Ri0. Note that the

algorithm used to compute RI
ν from RI may not be used to compute ∂Ri/∂pI from Ri.

That approach would produce ∂Ri/∂pi, the derivatives of the lab frame rotation matrix

for the site with respect to the lab frame angle-axis components for the site, which is of

no help in working out equation (3.52).

The first term ∂pi/∂Ri in equation (3.52) is more complicated. To compute the

derivative of the site’s angle-axis vector pi with respect to the entries in the corresponding

rotation matrix Ri, we can appeal to the transformation from rotation matrices to angle-

axis vectors:

p(R) =
arccos

[
1
2
(TrR− 1)

]

2
√
1− 1

4
(TrR− 1)2



R32 −R23

R13 −R31

R21 −R12


 (3.54)

≡ Xy, (3.55)

where X ≡ 1
2
arccosT/

√
1− T 2 and T ≡ 1

2
(TrR− 1). Noting that

∂X

∂Rαβ

=
1

2 (1− T 2)

[
T

arccosT

2
√
1− T 2

− 1

2

]
δαβ (3.56)

∂yγ
∂Rαβ

= −ǫ αβ
γ , (3.57)

where δ is the Kronecker delta and ǫ is the Levi-Civita symbol, we have one set of terms

for the diagonal α = β and another set for the off-diagonals. Putting them together yields

∂piµ
∂Ri

αβ

=
1

2 (1− T 2)

[
T

arccosT

2
√
1− T 2

− 1

2

]
δαβyµ −

arccosT

2
√
1− T 2

ǫ αβ
µ , (3.58)
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where T and y are computed using Ri.

It should be noted that the values ∂piµ/∂R
i
αβ are not the numerical reciprocals of

∂Ri
αβ/∂p

i
µ =

(
Ri

µ

)
αβ
. For most rotation matrices, all the elements of ∂R/∂p are nonzero,

but ∂p/∂R will always have zero elements, since, e.g., p1(R) does not depend on R12,

R13, R21, or R31. Analytically, it is clear that this approach is invalid since there is no

one-to-one correspondence between rotations p and matrices R in this formalism. Angle-

axis rotations and rotation matrices have a one-to-one relationship only if orthogonality

of the matrices is enforced.

The values that make up ∂pi/∂Ri need only be computed once per ∂pi/∂pI . Combin-

ing the second term ∂pi/∂Ri with ∂Ri/∂pI in equation (3.52) requires a Frobenius (i.e.,

entry-wise matrix) product over α and β. This makes this method more computationally

expensive than computing the body-body orientational gradients by appealing to the form

of the specific potential where possible.
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Chapter 4

Designing left-handed structures from

right-handed building blocks

4.1 Introduction

Previous work30,65,67 has shown that achiral building blocks modeled by sites interacting

via an ellipsoidal Lennard-Jones-like potential self-assemble into chiral helical structures.

This chirality was associated with broken symmetry in the minimum energy configuration

of the dimer when two ellipsoids prefer to stack off-center rather than directly on top of

one another.

If achiral building blocks can produce chiral structures, then what is the relationship

between the chirality of building blocks and the chirality of the structures into which they

assemble? It is natural to assume that molecular chirality unambiguously determines

the chirality of a material so that a molecule of one particular handedness will produce

materials of one particular handedness. Nevertheless, experimental evidence in amyloid

fibrils,69,70 insulin,71,72 chiral phospholipids,73 and cellulose74 has demonstrated that this

relationship is ambiguous: in nature, some right-handed molecules produce mixtures of

right- and left-handed materials. It is unclear whether this ambiguity is due to properties

of the building blocks, stochastic effects, or the specifics of the material’s preparation.75–78

Probing the relationship between the chirality of building blocks and of their assem-

bled structures requires a building block with adjustable chirality. Taking inspiration from

experiments that produce helices of adjustable pitch using closely related molecular build-

ing blocks79 and experiments that produce nematic phases with temperature-controlled

pitch,80,81 we have investigated the self-assembling structures that result from building

blocks with adjustable chirality. These building blocks consisted of pairs of ellipsoids

joined side-to-side in a rigid body that roughly resembles a bowtie. Over most of the
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0.5 a21

a13

Figure 4.1: Cross-section of a Paramonov-Yaliraki25 site as parameterized in this study,
showing the repulsive ellipsoid (red), the attractive ellipsoid (blue), the repulsive equa-
torial semiaxis (0.5), the attractive equatorial semiaxis a21, and the polar semiaxis a13
common to both ellipsoids. In these parameterizations, the two ellipsoids have a common
equatorial plane and the same north and south poles.

parameter space we explored, right-handed bowties assemble into right-handed helices.

However, certain sets of right-handed bowties assemble into left-handed helices. This be-

havior can be understood and predicted by analyzing the interaction of building blocks

within a conformational subspace. Hence we provide quantitative design principles for

constructing helical morphologies that only require experimental or simulation data within

this subspace.

4.2 Methods

4.2.1 The Paramonov-Yaliraki potential

We used the Paramonov-Yaliraki (PY) potential25 to model the interactions between the

ellipsoids in the bowties. The individual PY sites are parametrized by the shapes of the

repulsive and attractive ellipsoids, which are described by the three repulsive semiaxes,

a1i, and the three attractive semiaxes, a2i. The parameterization used in this study is

depicted in Figure 4.1. The repulsive and attractive ellipsoids are ellipsoids of revolution,

and there are two free parameters: the polar semiaxis, a13, which is common to both the

repulsive and attractive ellipsoids, and the attractive equatorial semiaxis, a21. Both a13

and a21 were systematically varied to elucidate design principles for the building blocks

described below.

4.2.2 The building blocks

In this study we examined structures formed from identical rigid bodies composed of

two equivalent PY sites (Figure 4.2). The centers of the sites were separated by the

repulsive equatorial diameter, and the equatorial planes of the two sites in the building

block intersected along a line that runs through the centers of both sites. The angle

25
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Figure 4.2: The bowtie building block consists of two ellipsoids joined side-to-side. The
dihedral angle φ is the angle between the equatorial planes of the two sites in the building
block. The φ = 0◦ bowtie is achiral, the φ = 45◦ bowtie is right-handed, and the φ = −45◦
bowtie is left-handed. The side views show that the φ = ±45◦ bowties are mirror images
of one another and cannot be superposed.

between the equatorial planes of the two sites is the dihedral angle φ.

For φ = 0◦, the two sites in the pair have the same orientation, and the equatorial

planes of both sites coincide. In this case, the building block has D2h symmetry and

resembles a bowtie whose ‘wings’ are in perfect alignment. We considered building blocks

with φ = 0◦ as limiting cases because the D2h point group is achiral. Although building

blocks with φ = 90◦ are also achiral, they do not form helices and we do not consider

them here.

Bowties with 0◦ < φ < 90◦ have D2 symmetry and are therefore chiral. Bowties

with dihedral angles 90◦ < φ < 180◦ correspond to bowties with −90◦ < φ < 0◦ and are

therefore mirror images of bowties with 0◦ < φ < 90◦. As a convention, we define building

blocks with 0◦ < φ < 90◦ as right-handed. Holding a φ = 0◦ bowtie in front of you, a

right-handed pair is then formed by twisting your right thumb through the angle φ away

from your body while keeping your left hand fixed.

4.2.3 Exploring the landscape

Global potential energy minima for clusters of bowtie building blocks were identified

using the basin-hopping50,51,82 program GMIN,53 which takes steps between local minima

on the potential energy surface by randomly perturbing the position and orientation of

each building block. Translational perturbations were uniformly distributed in a sphere

with a radius of the same order as the building block’s size (∼2.0) and the orientational

perturbations were uniformly distributed over ∼1.0 radian. Perturbations that produced
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overlap (F < 1) were discarded. If three sets of randomly-selected starting coordinates

all produced the same lowest minimum, we accepted this structure as the putative global

minimum. Otherwise we increased the number of basin-hopping steps until this criterion

was met.

In studies of the structures formed by single PY sites, only a few hundred basin-

hopping steps were required to reach consistency between runs starting from distinct

configurations.30 However, for the bowtie building blocks, tens of thousands of steps were

required to reach the same kind of consistency. The increase in landscape complexity is

probably due to the differences in the interaction range parameters σ0 used in the two

studies. The study of single-site PY building blocks used σ0 = 1, 18, and 30, while in this

study we used only σ0 = 1. Decreasing the interaction length scales probably makes the

energy landscape more rough40,83,84 and makes it more difficult to identify global minima.

4.3 Results

4.3.1 Bowties assemble into helices

Over a large part of the parameter space of a13, a21, and φ, the global potential energy

minimum for a cluster of these bowtie building blocks consists of segments of helices.

Building blocks with φ = 0◦ assembled into achiral stacks, which are the limiting case of

helices as the helix pitch diverges. We explored the region bounded by 0.1 ≤ a13 ≤ 0.5 and

0.1 ≤ a21 ≤ 0.5. Figure 4.3 shows a disconnectivity graph, a visualization of the energy

landscape,27,54 for one particular parameterization. As discussed in Section 2.5, most of

the graph looks like a palm tree. There are, however, a few interesting features separate

from the main funnel. In this example, the main funnel consists of minima that have

two helical strands. In some, like minimum a, the two strands are joined. In others, like

minimum b, ‘caps’ sit on top of or below the two strands. The bottom of the main funnel,

minimum c, has two strands of equal length. The global minimum d, which is separated

from the rest of the minima by a high barrier, is a single helix for this parameterization.

Because the main funnel has a palm tree shape, we expect that a physical realization of

these bowtie building blocks would self-assemble into helices or stacks.

Figure 4.4 shows the parts of this parameter space in which the global minimum energy

configuration consists of stacks when the parameter φ is fixed at 0◦. The rotation angle Ω,

which is the angle between corresponding axes of the bowties, quantifies the chirality of

the helices. Stacks have Ω = 0◦. As a convention, we use Ω > 0◦ to describe a helix that is

right-handed in the sense of Figure 4.5. In general, the chirality of the helix matches the

chirality of the building block, so achiral building blocks (φ = 0◦) produce achiral stacks
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Figure 4.3: A part of the disconnectivity graph for 12 bowtie building blocks (a13 = 0.15,
a21 = 0.28, φ = 23◦), showing the organization of the landscape for the minima at the
bottom of the main funnel. Energies are measured in ǫ0.

(Ω = 0◦), right-handed building blocks (φ > 0◦) produce right-handed helices (Ω > 0◦),

and left-handed building blocks (φ < 0◦) produce left-handed helices (Ω < 0◦).

4.3.2 Changes in morphology of the global minimum can be predicted

Because the global minima are generally helical in the region of parameter space we

considered, it is useful to define a reduced potential energy landscape U(Ω, d) whose

coordinates are the two parameters that describe a single helix: the distance d between

the centers of adjacent bowtie building blocks and the rotation angle Ω. Because d is

mostly unrelated to the investigation of chirality, the potential energy landscape can be

further reduced to one with a single coordinate Ω by defining

Ũ(Ω) = min
d

U(Ω, d). (4.1)

The function Ũ is well-defined because U has only one minimum in d with Ω fixed.

The Ũ landscape is useful for identifying morphological transitions in the parameter

space. For example, Ũ for bowties with φ = 0◦ and low attractive equatorial semiaxis a21
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Figure 4.4: Regions of the parameter space of a13 and a21 for which the global minima of
clusters composed of bowtie building blocks with φ = 0◦ consist of either stacks or more
isotropic clusters of bowties. Two global minima for N = 10 and two parameterizations
(black dots) are shown: one stack (a13 = 0.2, a21 = 0.3) and one cluster (a13 = 0.2,
a21 = 0.4).

has one minimum at Ω = 0◦. For higher a21, a local minimum of higher energy forms at

Ω = 90◦. As a21 increases, the energy of the Ω = 90◦ minimum decreases and the energy

of the Ω = 0◦ minimum increases. At a critical value of a21, the two minima are equal

in energy. At this point in the parameter space, the Ω = 0◦ minimum is no longer the

global minimum as viewed in the reduced energy landscape with coordinates d and Ω. It

is also at precisely this value of a21 that the configuration corresponding to the minimum

in Ũ is no longer a local minimum in the complete 6N -dimensional landscape, where N

is the number of building blocks. Hence this value of a21 represents the boundary of the

helix-forming part of the parameter space for φ = 0◦ shown in Figure 4.4. A similar

analysis applies for φ 6= 0◦, but here the minima in Ũ are displaced away from Ω = 0◦

due to the broken symmetry.

In general, increasing a21 out of the helix-producing region of the parameter space

yields structures that are more and more isotropic. At first, the helix breaks into a
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‘ladder’ where adjacent bowties are staggered. For higher values, the helix bends over

and loses its helical topology. For very high values of a21, the potential energy minima

are clusters with no particular directionality (Figure 4.4).

4.3.3 Using single helices

For a small number of building blocks (N . 10), the global minimum energy configuration

consists of a single helix. For larger N , the global minimum consists of multiple helices

attached side by side. Although it is more energetically favorable for bowties to stack on

top of one another than to attach side by side, forming multiple helices breaks a single

top-to-bottom contact and creates multiple side-to-side contacts. Hence this change in

structure is energetically favorable for larger N . The configuration of the global minimum

also depends on a13, a21 and φ. For example, in Figure 4.3, the single strand is the global

minimum. In the system with the same N , a13, and a21 but with φ changed from 23◦ to

0◦, the global minimum is not a single stack analogous to the single helix in Figure 4.3.

Instead, the global minimum consists of two associated stacks analogous to those at the

bottom of the main funnel in Figure 4.3. In general, the global minimum is not a single

helix.

Having verified that the global potential energy minimum configurations all consist of

helices or achiral stacks, we measured the relationship between the dihedral angle φ of

the building blocks and the rotation angle Ω of single helices. Although a single helix is

usually not the global minimum, the relationship between φ and Ω is much clearer in this

minimum, since the interactions between side-by-side strands cause the rotation angle of

the global minima to depend strongly on N . To measure Ω(φ) without this complication,

we set up long (N = 100) helices of bowtie building blocks with 0.1 < d < 1.0 and

−90◦ < Ω < 90◦ and evaluated their energies without relaxing the structure. We then

relaxed the helix with the lowest energy. The result was always a single helix, that is, the

single minimum on the Ũ landscape for N = 100.

Because the helices were so long, edge effects were negligible: the rotation angles

between the middle ten building blocks were equal to one another to within less than

0.001◦, and these angles changed by less than 1% when the number of building blocks in

the helix was changed to either N = 50 or N = 200. Hence the rotation angle between the

two centermost building blocks in a single N = 100 stack provided a reasonable measure

of Ω for a given φ. Although the precise numerical relation between φ and Ω in the global

minima is different from the relation in the single helices we measured, the general trends

described below appear to apply in both cases.
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Figure 4.5: The relation Ω(φ) for bowtie building blocks composed of PY sites of inter-
mediate anisotropy (a13 = 0.15, a21 = 0.28). The helices are segments of the N = 100
helices used to compute the relationship Ω(φ) shown in the graph. The curve in the graph
terminates at the critical value of φ after which the local minimum energy configuration
is no longer a helix.

4.3.4 The chirality of the building block determines the chirality of the helix

The relationship between the building block dihedral angle φ and the helix rotation angle

Ω exhibits two distinct characteristics across the helix-forming parameterizations of a13

and a21: Ω is mostly proportional to φ when φ is small, and Ω falls with increasing φ when

φ is beyond the linear regime. For example, Figure 4.5 shows Ω(φ) for a bowtie composed

of ellipsoids of intermediate anisotropy. Achiral building blocks (φ = 0◦) produce an

achiral stack (Ω = 0◦). For φ . 15◦, Ω is proportional to φ, and Ω falls for φ & 20◦.

The linear relation is caused by in-chain attraction and the competing trend is caused

by cross-chain repulsion. The relative importance of these two effects can be tuned via

the parameters a13 and a21.

4.3.5 In-chain attraction causes Ω to increase linearly with φ

Attraction between corresponding attractive ellipsoids of nearest-neighbor building blocks

leads to the linear relationship between φ and Ω. In stacks with small φ, the value of Ω

is the one that minimizes the distance between the north pole of the lower ellipsoid and

the south pole of the upper ellipsoid. If the distance between the centers of the bowties
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were fixed at d, the distance between the two poles would be

{[
a21(1− cosΩ)− a13 sin

φ

2
sinΩ

]2

+

[
−a21 sinΩ + a13 sin

φ

2
(1 + cosΩ)

]2
+

[
2a13 cos

φ

2
− d

]2}1/2

, (4.2)

which is minimized when

Ω∗ = arctan

[
2 (a13/a21) sin(φ/2)

1− (a13/a21)
2 sin2(φ/2)

]
. (4.3)

For a13 ≪ a21, Ω
∗ ≈ 2 (a13/a21) sin (φ/2). Since 2 sin (φ/2) ≈ φ to within 5% for 0◦ < φ <

60◦, we see that Ω∗ ≈ (a13/a21)φ. This analysis quantitatively predicts the slope of the

linear parts of the Ω(φ) curves.

Decreasing the attractive equatorial semiaxis a21 increases the range of φ over which

Ω is linear. In the limit a21 → 0, the attractive ellipsoids reduce to rods whose endpoints

lie at the poles of the two ellipsoids. The point of closest approach between the attractive

ellipsoids in a chain will be at the ends of rods. In this case, it is clear that in-chain

attraction seeks to minimize the distance between the poles of the two ellipsoids.

The energy of the helices increases as φ increases until some maximum value of φ.

This critical value decreases from about 60◦ for larger a21 down to 0◦ as a21 reaches the

boundary where the morphology of the global minimum changes for φ = 0◦ (Figure 4.4).

Increasing φ beyond this value causes the helix to collapse into a more isotropic cluster.

The increased energy and consequently decreasing stability are due to the increasing

distance of closest approach between attractive ellipsoids in the same chain.

4.3.6 Cross-chain repulsion causes Ω to fall with φ

The decrease in Ω at larger φ is easy to understand by considering the Ũ landscape.

The minimum energy structures in 6N -dimensional space correspond to minima on this

surface, so the gradients of the four energy contributions (in-/cross-chain and attrac-

tive/repulsive) with respect to Ω at the minimum determine the relative importance of

the various effects. At these minima, in-chain attraction biases Ω to higher values, but

cross-chain repulsion causes Ω to fall to the observed smaller values. Thus, cross-chain

repulsion dominates the behavior of Ω for larger φ.

Because the points of closest approach for the repulsive ellipsoids are at the ‘tips’ of

the bowtie’s ‘wings’, nearly isotropic repulsive ellipsoids have a cross-chain repulsion that

remains mostly constant with φ (Figure 4.6a). In this case, the behavior of Ω is wholly
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Figure 4.6: a) A right-handed bowtie building block composed of nearly isotropic PY
sites (a13 = 0.41, a21 = 0.1) and the corresponding relation Ω(φ). b) A right-handed
bowtie building block composed of highly anisotropic PY sites (a13 = 0.1, a21 = 0.23) and
the corresponding relation Ω(φ). The building blocks are right-handed for all values of φ
shown, but the resulting structures are right-handed for 0◦ < φ . 42◦ and left-handed for
φ & 42◦, as in the left-handed helix shown.

dominated by the in-chain attraction. Conversely, highly anisotropic ellipsoids accentuate

the effects of cross-chain repulsion. In fact, PY sites with disk-like ellipsoids have cross-

chain repulsion that can reverse the handedness of the resulting helix (Figure 4.6b). In

these cases, an achiral building block (φ = 0◦) produces an ahelical structure (Ω = 0◦);

a right-handed building block (φ ≈ 20◦) produces a right-handed structure (Ω > 0◦);

but a different right-handed building block of the same family of structures (φ ≈ 60◦)

produces a left-handed structure (Ω < 0◦). Because Ω varies smoothly with φ, there is

also a right-handed building block (φ ≈ 43◦) that produces an achiral structure (Ω = 0◦).
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4.3.7 Geometrical trends

The spacing between the bowties along the axis of the helix depends nearly linearly on the

polar semiaxis a13 according to d ≈ 2.3 a13 when φ is small. The value of the attractive

equatorial semiaxis a21 has little effect on d, since the organization of the helix along its

axis is due mostly to the polar axes rather than the equatorial axes. Values of d differ

significantly from the small φ limit when cross-chain repulsion begins to influence Ω, since

then the organization along the axis is affected by the interaction of the ‘wings’ of the

bowties, whose position depends on φ. Because d is mostly insensitive to φ, the helix

pitch, which is proportional to d/Ω, scales like φ−1 for small φ.

4.4 Conclusions

It is important to note we did not explicitly encode the model for the bowtie building

blocks so that right-handed building blocks would produce assemblies of both chiralities.

Instead, this behavior emerged from a simple building block and the anisotropy inherent

in the PY sites. To the best of our knowledge, this bowtie building block is the first model

that produces both right- and left-handed structures from right-handed building blocks.

Designing building blocks that assemble into fiber-like superstructures is an important

theme in supramolecular chemistry.85 As noted in previous research on families of single

molecules that assemble into helical superstructures of varying chirality,79 nanostructures

whose structural angles could be adjusted dynamically might have applications in selective

stereochemistry and nonlinear optics.
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Chapter 5

Rigid bodies with PY sites: further designs

5.1 Bowties with long range interactions

The two-site rigid bodies discussed in Chapter 4 interacted via a short-range potential

(σ0 = 1). Although short-range potentials are easier to interpret as analogues of short-

range forces between nanostructures, using larger σ0 permits different parameterizations

of the PY sites from Chapter 4. Consider the parameterization in Figure 5.1. Because

the equatorial semiaxes of the repulsive and attractive ellipsoids are equal, there is an

excluded-volume-type interaction in the equatorial plane. However, in this parameter-

ization the attractive polar semiaxis is greater than the repulsive polar semiaxis. In a

simulation with σ0 = 1, the ellipsoids would stack on top of one another and interpen-

etrate. Though there is nothing wrong with overlapping configurations, they do create

a very rough landscape whose low-lying minima are difficult to find. This propensity

for overlap can be overcome by increasing the interaction length σ0, which smooths the

landscape (Sections 2.2.3 and 4.2.3).

For example, a system of six particles with these parameters and σ0 = 12 assembles

into a single helix for small dihedral angles φ (Figure 5.2). In light of previous research,30

it is not surprising that the helix’s rotation angle Ω is nonzero even when φ = 0◦. Just as

with the σ0 = 1 bowties discussed in Chapter 4, the helices break into a ladder morphology

when φ is increased beyond some critical value (Figure 5.2c). Increasing φ further causes

the ladders to collapse into two-dimensional clusters in which the centers of the bowties

all lie in a plane (Figure 5.2d).

Increasing the number of particles in the system requires increasing σ0 in order to

prevent overlap. For a system of 100 particles, σ0 = 40 was sufficient to prevent bowties

with the same parameters from overlapping. In this system, the low-lying minima for

small φ consist of multiple helices of bowties wrapping around a common center that has
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Figure 5.1: Cross-section of a Paramonov-Yaliraki25 site used to make up the bowtie rigid
bodies in simulations with σ0 > 1. The repulsive ellipsoid of revolution (red) is contained
inside the attractive ellipsoid of revolution (blue).

some smaller helices inside (Figure 5.3). As φ increases, these low-lying minima become

less prolate. Between φ = 0◦ and φ = 46◦, the ratio of the two larger principal moments

of inertia to the smaller one decreased from about 1.4 to about 1.2. The structure shown

for φ = 90◦ is actually oblate: there are two small principal moments of inertia and one

large one.

Parametrizations like the one shown in Figure 5.1 present a problem because the value

of σ0 needed to produce interesting results depends on N .

5.2 Four-site rigid bodies

Rigid bodies of PY sites should be sufficient for modeling molecules with four-fold sym-

metry. The chiral disk-shaped molecule synthesized and characterized by Engelkamp,

Middelbeek, and Nolte86 has four benzo crown ether moieties attached to a phthalo-

cyanine ring. The structure of the molecule and the four-site rigid body inspired by it

are shown in Figure 5.4. Characterization of the molecule showed that it self-assembles

into fibers consisting of right-handed helices wound around one another in a left-handed

superstructure.

This complementarity of handednesses is essential for good packing of the building

blocks. The helices assembled from these four-site building blocks have ridges corre-

sponding to the four corners and grooves corresponding to the grooves between the PY

ellipsoids. For structures to maximize the number of contacts between constituent build-

ing blocks, the ridge of one helix must fit into the groove of its neighbor. Equilibrium

structures of the four-site building block that reproduce one configuration with this type

of complementarity are shown in Figure 5.5.
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Figure 5.2: Global minima for six bowtie building blocks with σ0 = 12 and the parameters
shown in Figure 5.1. Only the repulsive ellipsoids are shown. a) φ = 0◦ b) φ = 23◦ c)
φ = 34◦ d) φ = 57◦

a) b) c)

Figure 5.3: Low-lying minima for 100 bowtie building blocks with σ0 = 40 and the
parameters shown in Figure 5.1. a) φ = 0◦. The up-down axis is the principal axis with
the small moment of inertia. b) φ = 46◦, with the same orientation. c) φ = 90◦. The axis
perpendicular to the page is the principal axis with the large moment of inertia; this is a
top-down view of the cluster.
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top view

side view

Figure 5.4: a) A chiral disk-shaped molecule.86 b) An achiral rigid body constructed from
four PY sites. The major semiaxes of all four ellipsoids lie in a plane, and their centers
are separated by twice the length of the repulsive major semiaxes.

a)

b)

Figure 5.5: Equilibrium structures of four-site building blocks (a11 = a12 = 0.5, a13 =
0.175, a21 = a22 = 0.55, a23 = 0.265, σ0 = 1) and schematics of the structures. a) A single
twisting stack. b) Two twisting stacks of opposite handedness whose grooves and ridges
are complementary.
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Chapter 6

Chiral polar potential

6.1 Chiral interactions without chiral structures

In Chapter 4, chirality was introduced by constructing chiral bowtie building blocks.

Each individual ellipsoid in the building block was achiral, and the interactions between

individual ellipsoids were achiral, as neither the ECF nor the PY potential has any inher-

ent preference for one handedness or the other. The interaction between whole building

blocks, however, was chiral and produced chiral assemblies.

A coarse-grained chiral potential can reproduce the chiral interactions between build-

ing blocks without any reference to a particular building block structure. If a single

chiral site can reproduce the effects of multiple achiral sites, the simulation might be less

computationally expensive. This simplification also clarifies the behavior of the potential

by removing the intermediate step in which the structure of the building block deter-

mines the chirality of the interaction between building blocks. Instead, the chirality of

the interaction must be explicitly encoded in the potential. In this chapter, I present a

coarse-grained single-site chiral potential and, as a proof of concept, use it to reproduce

the structures exhibited by systems of chiral rod-like viruses.

6.2 The potential

The potential

U = −µ2σ3

r3
[
cosα

(
µ̂i · µ̂j

)
+ sinα

(
µ̂i × µ̂j

)
· r̂
]

(6.1)

describes the pairwise interaction between two chiral poles µi and µj, where |µi| =
|µj| = µ, separated by r. The length scale of the interaction is provided by σ. The angle

α specifies the chirality of the interaction. The gradients of this potential are provided in
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Figure 6.1: The minimum energy configuration for a dimer of chiral poles µ̂i and µ̂j

parametrized by the angle α when the intercenter distance is fixed.

Section A.1.

The µ̂i · µ̂j term is similar to the first term in the potential for a dipole. This term

favors orientations in which µ̂i and µ̂j are parallel, since U has an overall minus sign.

The
(
µ̂i × µ̂j

)
· r̂ term, on the other hand, favors orientations in which µ̂i and µ̂j are at

right angles and µ̂i × µ̂j is parallel to r̂. If the distance r is fixed, the dimer’s minimum

energy configuration has the two chiral poles oriented such that µ̂i × µ̂j is parallel to r̂

(Figure 6.1). In this case, µ̂i · µ̂j = cos θ and
(
µ̂i × µ̂j

)
· r̂ = sin θ, where θ is the angle

separating the poles. The potential is then proportional to

cosα cos θ + sinα sin θ = cos(α− θ), (6.2)

so the angle θ separating the chiral poles in the minimum energy configuration is α when

0 < α < π.

For α = 0, the interaction is achiral, and the poles prefer to be aligned. For α = π,

the interaction is still achiral, but the poles prefer to be antiparallel. For α = π/2, the

interaction is achiral if the two ends of the pole are indistinguishable. For −π < α < 0,

the dimer’s minimum energy configuration has the two chiral poles separated by an angle

|α| such that µ̂i × µ̂j is antiparallel to r̂. Thus, reversing the sign of α reverses the

chirality of the interaction.

Because U ∝ r−3, this potential must be combined with a repulsive core to prevent a

singularity at r = 0.
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Figure 6.2: Illustration of an fd virus membrane observed in experiment (reproduced from
Gibaud et al.24).

6.3 Application to modeling of systems of chiral rod-like viruses

The fd bacteriophage has been used as a model system for comparing theoretical systems

of rod-like particles with experiment.87 An fd virus consists of about 2700 copies of a

coat protein wrapped around a single loop of DNA. It is 880 nm long and has a diam-

eter of 6.6 nm, yielding an aspect ratio over 100.88 The virus is a useful experimental

platform because its length, chirality, and binding properties can be adjusted using point

mutations of the coat protein. M13 bacteriophage, a naturally-occurring mutant of fd

bacteriophage, has been used as a scaffold in self-assembling materials.89,90 In aqueous

suspension, fd viruses self-assemble into membranes and ribbons in which the chirality, or

twist, is expelled to the surface of the assembly (Figure 6.2).24 The chirality of the viruses

in these suspensions can be dynamically and continuously controlled via the temperature

of the system, suggesting a new method for manipulating the morphology of nanoscale

structures.

Molecular dynamics simulations of mixtures of hard spherocylinders and non-adsorbing

depletant molecules produced membranes similar to those found in experiment.24,91 Be-

cause these simulations used simple hard spherocylinders, they could only treat the case

of achiral building blocks. These are sufficient to model certain elements of the membrane

structure, but they cannot be used to investigate the effect of the building block chirality,

and the achiral spherocylinders probably cannot reproduce the ribbon morphology.

6.4 Disks

Some features of the membrane morphology observed in experiments on fd virus can be

reproduced using a coarse-grained building block and restricting the simulation to two

dimensions. In this case, the building block consists of two sites: an isotropic LJ site and

a chiral pole. A system of reduced units in which the LJ parameters ǫ0 and σ0 are set to

unity leaves the three independent parameters of the chiral site: the angle α, the chiral
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pole strength µ, and the polar interaction length σ. There are no depletant molecules in

these simulations.

These building blocks assemble into finite 2D circular sheets over a wide range of

parameter space (Figure 6.3). These sheets are called membranes when their radius is

much larger than the size of the building blocks24 and finite-sized disks in other cases.92

For α = 0, changes in µ and σ alter the spacing between the building blocks but do not

affect the hexagonal packing. Because the LJ sites are isotropic, the orientational ordering

is determined by the chiral poles alone. In disks that have a single building block at the

center, the central pole is perpendicular to the plane of the disk. The building blocks in

the first ring around the central pole are all tilted at an angle with respect to the central

pole. The second ring is tilted at an angle with respect to the first ring, and so on. The

incremental tilt between rings near the center of a large disk is mostly constant, but the

incremental tilt increases near the edge of the disk. The incremental tilt near the center

increases with α (Figure 6.4), but the tilt at a radius measured as a fraction of the disk

radius appears to be insensitive to the number of particles in the disk (Figure 6.5).

If α is small enough or N is large enough so that the poles on the outside ring are tilted

by less than or about π/2 with respect to the central pole, then there is no interruption to

the hexagonal packing. If α is large enough so that the poles on the outer ring would be

tilted beyond π/2, then the global minimum is probably no longer a single disk. The tilt

angles in Figures 6.3c, 6.3d, and 6.5 that exceed π/2 would probably not be energetically

favorable, since the poles tilted at those angles could form a new, smaller disk. The

global minima in these cases appear to consist of several smaller disks associated together,

suggesting that this building block can produce the structures treated in depletion-induced

phase transition theory.93

6.5 Helices and ribbons

Because the fd virus has a high aspect ratio, the isotropic LJ site is an inappropriate in-

gredient in a building block for 3D simulations. A 3D treatment of the chiral viruses must

introduce another parameter analogous to the virus length. In the following simulations,

the building blocks each consist of a chiral pole and an infinitely-thin rod of length L.

The interaction between these rods was LJ-like, and the pairwise energy of two interacting

rods was set to

4ǫrod

[(σrod

d

)12
−
(σrod

d

)6]
, (6.3)

where d is the distance of closest approach between the two rods as computed using Vega’s

and Lago’s algorithm.94 Setting the chiral pole length parameters σ0 = 1 and the rod
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a) b)

c) d)

Figure 6.3: Top views (upper panels) and side views (lower panels) of equilibrium disks
of 313 chiral pole building blocks restricted to two dimensions. Because the LJ sites in
these building blocks are isotropic, the colored rods only indicate the orientation of the
chiral pole. The length of the rods is arbitrary. a) α = 0. The other disks shown were
relaxed from starting coordinates very similar to this structure. b) α = 0.5. c) α = 1.0.
The inner rings are tilted in the same right-handed sense as in the α = 0.5 disk, but the
outermost ring has tilted beyond π/2 with respect to the upright center. d) α = 1.25. A
ring about halfway through the disk’s radius has tilted beyond π/2 with respect to the
upright center.
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Figure 6.4: The tilt of chiral poles in a disk of 313 chiral pole building blocks restricted
to two dimensions. This rate of increase itself increases as the angle α grows. Each line
depicts the result of a simulation of a system with a given α. Each point represents the
tilt of chiral poles in a given ring in the disk. (Compare with Figure 6.3. The centermost
chiral pole is upright and so has zero tilt. Stepping away ring by ring from the center
increases the tilt with respect to the center.)

energy ǫrod = 1 yields a system of reduced units such that the 3D building block has four

free parameters: the angle α, the pole strength µ, and the two rod length scales σrod and

L. Details of the algorithm used to compute d and derivations of the gradients of the

potential are provided in Section A.2.

For µ . 1, the structures of the potential energy minima are mostly determined by the

rods and typically consist of isotropic jumbles. The structures of the minima are mostly

insensitive to µ when µ & 1. Structures with L . 1 approach the L = 0 (i.e., isotropic

LJ) limit.

For µ & 1, the angle α is the most interesting parameter. Building blocks with small

α assemble into disks (Figure 6.6). For L/σ0 & 5, there is one single disk; for smaller L,

multiple disks stack on top of one another. For higher α, the building blocks assemble

into helices. These helices are themselves composed of very small disks. The competing

low-energy minima include a helical ‘tape’ for the disk and three- and four-way joints for

the helix (Figure 6.7).

Finally, equilibrium structures for this building block include a twisted ribbon similar
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Figure 6.5: The tilt of chiral poles with α = 0.5 in disks of varying size. Each line depicts
the result of a simulation of an N -particle system. The values for N were chosen so that,
for each new N , the radius of the resulting disk would increase by a constant distance.
(Compare with Figure 6.3. When the tilt exceeds π/2 ≈ 1.6, the chiral poles are tilted
beyond the normal edge seen in 6.3b.)

to those observed in fd virus experiments24 and predicted by theory93 (Figure 6.8). These

structures can be produced by relaxing from hexagonally-packed rectangles of upright

chiral poles similar to the upright disk structure in Figure 6.3a. When viewed from a

direction perpendicular to the ribbon’s long axis, the ribbon locally resembles a disk: it

has the same upright central pole and incremental tilting in the rings of poles surrounding

it. The chirality of the interaction between the building blocks induces a right-handed

swirl in the plane of the ribbon as well as an overall twist along the long axis of the ribbon.
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a) b) c)

top view

side view

Figure 6.6: Putative global minima for clusters of 25 chiral pole building blocks. Upper
panels show top view; lower panels show side views of the same system. In these figures,
the length of the depicted rod is equal to L, the length of the building blocks’ anisotropic
LJ-like rod. a) A single disk (α = 0.67, µ = 15, σrod = 0.5, L = 4). b) Decreasing the
rod length produces two disks (α = 0.67, µ = 10.25, σrod = 0.5, L = 1.3). c) Increasing
the chirality produces a helix (α = 1.3, µ = 10, σrod = 1, L = 4), which consists of small
disks. Each disk has a single upright pole and a surrounding ring of five building blocks.
The second representation of the structures has points at the centers of the rods and
bonds connecting the centers of nearest neighbors. The difference in color emphasizes the
helical structure.

a)

b)
top view

side view

Figure 6.7: Low-lying minima for clusters of 25 chiral pole building blocks. a) Top and
side views of a helical tape (α = 0.67, µ = 10.25, σrod = 0.5, L = 1.3). The difference
in color emphasizes different parts of the structure. b) A three-way helix joint (α = 1.3,
µ = 10, σrod = 1, L = 4). The joint is associated with deviations (emphasized in black)
from the regular geometry found in the perfect helix.

46

figs/chiro_gmin.ps
figs/chiro_notgmin.ps


a)

b)

Figure 6.8: a) Schematic structure of the twisted ribbons observed in experiment (repro-
duced from Gibaud et al.24). b) Two depictions of an equilibrium ribbon structure of
chiral pole building blocks (α = 0.8, µ = 10, σrod = 1, L = 2) relaxed from a hexagonally-
packed rectangle 5 building blocks wide and 50 long. Compare the upright poles in the
center of the ribbon with the upright rods in the the red regions in a, and compare the
tilted poles at the left and right ends of the ribbon with the tilted rods in the orange
regions in a.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, I proposed and studied five building blocks: the PY bowties in Chapter 4,

the two- and four-site PY building blocks in Chapter 5, and the two types of chiral pole

building blocks in Chapter 6. Each of these systems has demonstrated some aspect of the

relationship between the chirality of a building block and the chirality of the structured

formed by assembly of the building blocks. These building blocks might also prove to be

useful models of physical systems in their own right.

The PY bowtie is a simple building block with continuously adjustable chirality. Ex-

amining single helices of PY bowties showed that the chirality of the helices, measured

by their rotation angles Ω, depends on the parameterization of the ellipsoids making up

the bowties almost as strongly as on the chirality of the building blocks, measured by

their dihedral angle φ. For some parameterizations, Ω is nearly proportional to φ. In

others, positive values φ can produce both positive and negative values Ω. This discovery

may provide some insight into the ambiguous relationship between building block and

structure chiralities.

The four-site building block, though achiral, assembled into chiral screw-like struc-

tures. One set of screw-like structures provided a demonstration of the compatibility of

certain sets of chiral structures.

I used the novel, coarse-grained chiral polar potential two construct building blocks

for 2D and 3D simulations. The chiral polar potential favors geometries in which adjacent

building blocks are at a specified but adjustable angle with respect to one another. This

potential therefore favors chiral structures whose chirality can be continuously adjusted.

These simulations produced a variety of morphologies, including chiral disks, helices, and

ribbons. These assemblies closely resemble structures found in experimental studies of a
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chiral rod-like virus.

7.2 Future work

Having observed a possibly novel relationship between the chirality of building blocks and

their assembled structures in simulations of the PY bowties, it is important to see if a

comparable physical system, like an anisotropic colloid, can be made to exhibit this type

of behavior. An experimental collaboration with members of the Melville Laboratory for

Polymer Synthesis is planned. I am also interested in pursuing simulations of assemblies

of proteins whose chiralities switch when a single residue is mutated. These changes in

structure chirality might be usefully compared with changes of building block parameter-

ization rather than switches in building block chirality. More computationally expensive

simulations using the original building block could also help clarify the relationship be-

tween the number of building blocks and the length of the helices at the bottom of the

main funnel on the PES.

A four-site PY building block, whether chiral or achiral, should be able to reproduce

more complicated structures that demonstrate the steric compatibility of sets of chiral

structures beyond what has already been found.

The chiral polar potential can be used to add chiral interactions to any building block.

Previous simulations of the fd viruses used achiral spherocylinders and depletant molecules

to reproduce the entropic forces that cause the assembled structures to exhibit chirality.

By adding the chiral pole to this building block, I should be able to reproduce the com-

plementarity of energetic and entropic chiral forces observed in experiment and measure

observables like line tension and twist penetration depth. The chiral pole potential might

also be useful for modeling biological structures with chiral building blocks. For exam-

ple, blood clots are assemblies of fibers in turn assembled from chiral rod-like building

blocks.95

Overall, I hope that this thesis has demonstrated some new principles that will help

unravel the relation between building block and assembly chiralities. I also hope that

it has provided some new simulation tools and building blocks that will advance future

studies of chiral assemblies.

49



Appendix A

Gradients for potentials in Chapter 6

A.1 Chiral pole

The potential is

U = −µ2σ3

r3
[
cosα

(
µ̂i · µ̂j

)
+ sinα

(
µ̂i × µ̂j

)
· r̂
]
, (A.1)

where µi and µj are the poles, |µi| = |µj| = µ is the pole strength, σ is the interaction

length scale, and r is the vector separating the sites.

Noting that
∂

∂r
(a · r̂) = 1

r
[a− (a · r̂) r̂] , (A.2)

where a is constant, the radial gradient is

dU

dri
= −µ2σ3

r4

{
cosα

[
−3
(
µ̂i · µ̂j

)
r̂
]
+ sinα

[(
µ̂i × µ̂j

)
− 4

(
µ̂i × µ̂j · r̂

)
r̂
]}

. (A.3)

To compute the angular gradients, first note that

µ̂i = RIµ̂i0 ≡ RI
(
Ri0ẑ

)
(A.4)

so that

dU

dpIk
= −µ2

r3
{
cosα

[(
RI

kµ̂
i0
)
· µ̂j
]
+ sinα

[(
RI

kµ̂
i0
)
× µ̂j

]
· r̂
}

(A.5)

dU

dpJk
= −µ2

r3
{
cosα

[
µ̂i ·

(
RJ

k µ̂
j0
)]

+ sinα
[
µ̂i ×

(
RJ

k µ̂
j0
)]
· r̂
}
. (A.6)
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A.2 Lennard-Jones-like infinitely-thin rod

In the PY potential, a LJ-like interaction is modulated by the distance of closest approach

between two ellipsoids. In the rod potential, a LJ-like interaction is modulated by the

distance of closest approach between two rods. In this way, the rod potential is a limiting

case of a spherocylinder potential where the cylinder radius approaches zero.

Two rods of lengths Li and Lj centered at ri and rj with orientations defined by their

poles µ̂i and µ̂j have a distance of closest approach

d = min
x
i∈Si,xj∈Sj

∣∣xi − xj
∣∣ , (A.7)

where Si is the set of all the points in rod i. It is convenient to write the points of closest

approach xi and xj as

xi = ri − λiµ̂i, (A.8)

where λi ≤ |Li/2|. Thus,

d = min
λi≤|Li/2|,λj≤|Lj/2|

∣∣rij − λiµ̂i + λjµ̂j
∣∣ . (A.9)

The pairwise energy is

U ij = 4ǫ0

[(σrod

d

)12
−
(σrod

d

)6]
. (A.10)

The λ values are necessary for computing the energy and gradient. There is a deter-

ministic algorithm for finding λi and λj.94 The algorithm is roughly:

1. Check if µ̂i is parallel to µ̂j. If the rods are parallel and exactly side-by-side, set

λi = λj = 0. If the two rods are parallel but not side-by-side, set λi = ±Li/2, where

the sign is the one that places xi nearer the interior of the other rod, and set λj to

the value that chooses the correct contact point in Sj .

2. If the two rods are not parallel, compute

λi =
[
1−

(
µ̂i · µ̂j

)2]−1 [
r · µ̂i −

(
µ̂i · µ̂j

) (
rij · µ̂j

)]
(A.11)

λj =
[
1−

(
µ̂i · µ̂j

)2]−1 [
−r · µ̂j +

(
µ̂i · µ̂j

) (
rij · µ̂i

)]
(A.12)

3. If λi is outside of the permitted range, change it to the closest of the two values

±Li/2. Recompute λj using this λi as input.

4. If λj is outside of the permitted range, change it to the closest of the two values
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±Lj/2. Recompute λi using this λj as input. If λi is still outside the permitted

range, change it to the closest endpoint.

5. Compute d2.

It is easier to compute and take the derivatives of δ ≡ d2 rather than d. In these terms,

the pairwise interaction is

U ij = 4ǫ0
[
δ−6 − δ−3

]
. (A.13)

The translational derivatives are

dU ij

dri
= 4ǫ0

[
−6δ−7 + 3δ−4

] dδ

dri
(A.14)

dδ

dri
=

∂δ

∂ri
+

∂λi

∂ri

∂δ

∂λi
+

∂λj

∂ri

∂δ

∂λj
(A.15)

∂δ

∂ri
= 2

(
rij − λiµ̂i + λjµ̂j

)
(A.16)

where

∂λi

∂ri
=





[
1−

(
µ̂i · µ̂j

)2]−1 [
µ̂i −

(
µ̂i · µ̂j

)
µ̂j
]

if λi 6= ±Li/2

0 if λi = ±Li/2
(A.17)

∂δ

∂λi
= −2

[(
rij · µ̂i

)
− λi + λj

(
µ̂i · µ̂j

)]
(A.18)

∂λj

∂ri
=





[
1−

(
µ̂i · µ̂j

)2]−1 [
−µ̂j +

(
µ̂i · µ̂j

)
µ̂i
]

if λj 6= ±Lj/2

0 if λj = ±Lj/2
(A.19)

∂δ

∂λj
= −2

[(
rij · µ̂j

)
− λi

(
µ̂i · µ̂j

)
+ λj

]
(A.20)

As usual, dU ij/drj = −dU ij/dri.

The orientational derivatives are

dU ij

dpik
= 4ǫ0

[
−6δ−7 + 3δ−4

] dδ

dpik
(A.21)

dδ

dpik
=

∂δ

∂pik
+

∂λi

∂pik

∂δ

∂λi
+

∂λj

∂pik

∂δ

∂λj
(A.22)

∂δ

∂pik
= −2λi

(
RI

kµ̂
i0
)
· xij (A.23)
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where

∂λi

∂pik
= 2

[
1−

(
µ̂i · µ̂j

)2]−2 (
µ̂i · µ̂j

) (
RI

kµ̂
i0 · µ̂j

) [
rij · µ̂i −

(
µ̂i · µ̂j

) (
rij · µ̂j

)]

+
[
1−

(
µ̂i · µ̂j

)2]−1 [
rij ·RI

kµ̂
i0 −

(
RI

kµ̂
i0 · µ̂j

) (
rij · µ̂j

)]
(A.24)

∂λj

∂pik
= 2

[
1−

(
µ̂i · µ̂j

)2]−2 (
µ̂i · µ̂j

) (
RI

kµ̂
i0 · µ̂j

) [
−rij · µ̂j +

(
µ̂i · µ̂j

) (
rij · µ̂i

)]

+
[
1−

(
µ̂i · µ̂j

)2]−1 [(
RI

kµ̂
i0 · µ̂j

) (
rij · µ̂i

)
−
(
µ̂i · µ̂j

) (
rij ·RI

kµ̂
i0
)]

(A.25)

∂δ

∂pik
= −2λj

(
RJ

k µ̂
j0
)
· xij (A.26)

∂λi

∂pik
= 2

[
1−

(
µ̂i · µ̂j

)2]−2 (
µ̂i · µ̂j

) (
µ̂i ·RJ

k µ̂
j0
) [

rij · µ̂i −
(
µ̂i · µ̂j

) (
rij · µ̂j

)]

−
[
1−

(
µ̂i · µ̂j

)2]−1 [(
µ̂i ·RJ

k µ̂
j0
) (

rij · µ̂j
)
+
(
µ̂i · µ̂j

) (
rij ·RJ

k µ̂
j
)]

(A.27)

∂λj

∂pjk
= 2

[
1−

(
µ̂i · µ̂j

)2]−2 (
µ̂i · µ̂j

) (
µ̂i ·RJ

k µ̂
j0
) [
−rij · µ̂j +

(
µ̂i · µ̂j

) (
rij · µ̂i

)]

+
[
1−

(
µ̂i · µ̂j

)2]−1 [
−
(
rij ·RJ

k µ̂
j0
)
+
(
µ̂i ·RJ

k µ̂
j0
) (

rij · µ̂i0
)]

(A.28)
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[8] M. Lazzari and M. López-Quintela, Adv. Mater. 15, 1583 (2003).

[9] K. T. Nam, D. Kim, P. J. Yoo, C. Chiang, N. Meethong, P. T. Hammond, Y. Chiang
and A. M. Belcher, Science 312, 885 (2006).

[10] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press (2001).

[11] D. G. Grier, Nature 424, 810 (2003).

[12] K. E. Strecker, G. B. Partridge, A. G. Truscott and R. G. Hulet, Nature 417, 150
(2002).

[13] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Pérez, S. Morita and O. Custance,
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