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Abstract

The work presented in this thesis investigates the relati@hip between the chirality of a
building block and the chirality of structures into which these building blocks assemble.
| present and use an existing single-site anisotropic coargrained potential for modeling
the interactions between ellipsoids, and | propose a novegarithm for computing this
potential.

| introduce a building block, constructed from two sites intracting via the ellipsoidal
potential, which has an adjustable chirality. The topologyof the low-lying minima, which
are all helical, inspired the investigation of a conformadinal subspace. Structures in this
subspace have a well-de ned and continuous chirality. A faihg of right-handed building
blocks produces both right- and left-handed structures inhis subspace, providing what
| believe is the rst theoretical model of this type of ambigous relationship between
building block and structure chiralities. Other building Hocks constructed from these
ellipsoidal sites are discussed.

Finally, 1 propose a single-site anisotropic potential themodels a torsional inter-
action. Combining this single-site potential with sites iteracting via the Lennard-Jones
potential and an anisotropic Lennard-Jones-like potentlgpproduces membrane and ribbon
structures that resemble structures observed in experimisnon chiral rod-like viruses.
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Chapter 1

Introduction

1.1 Coarse-grained simulations

Self-assembly, the process by which building blocks spon&ously arrange themselves
into a well-ordered structure! is a theme that has drawn signi cant attention in physic&
biology®®! chemistry® materials scienc&?® and engineering Molecular building blocks,
whose sizes are typically measured in angstroms, can be ¢arged using synthetic chem-
istry and their behavior modeled using quantum mechanicar @lassical atomistic poten-
tials. Microscopic building blocks, whose sizes are typibameasured in micrometers, can
be modeled using classical simulatiod8. The nanoscale, or mesoscopic, regime bridges
the divide between molecular and microscopic length scales

Experiments that manipulate nanoscale objects use tool&di optical tweezers! atomic
traps22 and atomic force microscopy® Most of these techniques do not change the elec-
tronic structure of the objects, so there are no direct cheal changes in the manipulated
materials. On the other hand, these tools rely on forces thatre too weak to be used
to handle macroscopic objects. Simulations treating nancale objects may similarly fall
between previous categories. Coarse-grained potentiadsore the ne-grained details of
individual atoms by grouping the simulated elements into hilding blocks that represent
the physical building blocks relevant to the self-assemblyrocess. This approach has the
computational bene t of reducing the number of pairwise ingractions that need to be
computed at each simulation step.

Coarse-graining is also conceptually powerful, since itde nes the basic unit of the
physical interaction. If individual atoms are indeed unimprtant in a nanoscale inter-
action, then a theoretical model that starts at the level of he nanoscale building block
should be su cient to reproduce the appropriate behavior. ©arse-graining, then, pro-
vides information about the minimal design elements the bigiing blocks must have in



order to reproduce observed behavior. For example, simulats have successfully modeled
liquid crystal molecules as uniaxial ellipsoi#4 and rod-like colloids as spherocylindefs.
The choices made in formulating the building blocks typicit mirror choices about the
level of detail that will be used to model their interactions For example, removing solvent
molecules from a simulation requires the addition of an expit depletion forcel817

1.2 Chirality

There are notable isotropic forces in nature, including gvétation, electrostatics, and
the interactions between noble gas atord§. Nevertheless, the anisotropy of building
blocks and their interactions may be a key element in the deggi of the structures into
which those building blocks assembf29 Using self-assembly to construct rationally
designed structures and materials requires a deep understiang of the relation between
the properties of the building blocks and the properties ohe resultant structures.

Chiral building blocks, those that have a non-superposablairror image, typically
have chiral interactions that cause the assembled structes to be right- or left-handed®
The relationship between the chirality of building blocks ad of the assembled structures
has been treated by experiments on a variety of systefi$??4 |n Chapters[2 and® of
this thesis, | use the Paramonov-Yaliraki potenti&® to model the interactions between
ellipsoidal sites in two- and four-site building blocks. Ta two-site building blocks have
a continuously adjustable chirality, and examining the chality of a stable structure has
helped clarify a single mechanism by which some of the lessliwderstood aspects of
the relationship between the chirality of a building block ad the chirality of a composite
structure can be understood. In Chaptefl6, | introduce a potial that itself has con-
tinuously adjustable chirality and that can be used to modethe structures of clusters of
rod-like viruses whose chirality can be continuously adjtesd 24



Chapter 2

Methods

2.1 The potential energy surface

A system ofN nonlinear rigid bodies has B degrees of freedom,\B translational and 3N
orientational. If a potential is associated with the systemthe 6N variables describing the
system's con guration also determine the system's energy, The potential energy surface
(PES) is a 6\ -dimensional surface in the (8 + 1)-dimensional space of con gurational
coordinates and energy. The PES encodes all the informatiabout the potential energy
of the system's con gurations.

The most interesting features of the PES are stationary pdis. A con guration,
represented by a vectox with 6N components, is a stationary point on the PES if

X
@Ux) =0 (2.2)
@R x0=x
for all . In one dimension, stationary points are classi ed as maxia) minima, or neither

depending on the sign of the second derivative. In higher demsions, there is a matrix of
second derivatives, called the Hessiahl, whose entries are

_ @u(x9

H (x)= @ @R

(2.2)

0=x

A positive eigenvalue of the Hessian corresponds to the fremey of oscillation of the sys-
tem along the direction in con guration space speci ed by tk corresponding eigenvectors.
Small perturbations of the system away from the stationary @int along eigenvectors with
positive eigenvalues will produce small oscillations. A gative Hessian eigenvalue indi-
cates that the forces arising fromJ are non-restorative in the direction speci ed by the



corresponding eigenvectors. Perturbations along theseeattions will cause the system to
fall away from a stationary point. The number of negative eignvalues of the Hessian is
its index. Stationary points with Hessian index zero are lotaninima, those with Hessian
index one are transition state$% and those with Hessian indices greater than one are
saddle points??

2.2 Coarse-grained anisotropic potentials

2.2.1 Comparison of potentials

There are a number of potentials that model the interaction foanisotropic particles.
Although the Gay-Berne potential?® is the most well-known, it su ers from an opaque
parameterization, does not respond well to overlapping gaetries, and applies "arti cial
ordering forces?® Other anisotropic potentials, such as the elliptic contacpotential 2829
use the elliptic contact function (ECF), a measure of the rative separation and orien-
tation of two ellipsoids. Because the ECF is anisotropic ataftge distances, potentials
based solely on the ECF are unphysical in this limit. The Paraonov-Yaliraki (PY) po-
tential?® avoids the arti cial forces of the Gay-Berne potential by ugg the ECF but is
also isotropic at large distances.

2.2.2 The elliptic contact function

The ECF is a scalar that characterizes the proximity of two épsoids. The shape and
orientation of an ellipsoid is encoded in a shape matrix

A= a’uoug (2.3)

where theu; are orthogonal unit vectors pointing along the semiaxes ohe ellipsoid,
is the dyadic product, and thea; are the lengths of the semiaxes. (In a simulatio® is
typically computed usingA = RA RT, whereA is a diagonal matrix of thea, > and R
is a rotation matrix.) If the ellipsoid's center is atr, then the ellipsoid consists of all the
points x for which

1=AKX) (x ©)TAX r): (2.4)

Given a second ellipsoid with quadratic fornB and de ning the object function

Sx; )= AX)+(Q  )B(x); (2.5)



the ECF is
F(A;B) =max min§(; x): (2.6)

The minimization overx can be carried out analytically, as the value af that minimizes
S(; x) for a given is

x()=[ A+ )B]'[ Ar +(1 )Bsl; (2.7)

where s is the second ellipsoid's position. For this reasorfy ; x) is also written as
S() S(; x())so thatthe ECF can be reduced to a single optimization

F(A;B)=max ¥ ): (2.8)

Although this approach is geometrically meaningful, it is sapler to compute the ECF
using an equivalent formulation of the object function

)= @ e @ HA T+ B Trag: (2.9)

whererag = r s is the vector separating the centers of the ellipsoi#3. Typically
the value , called the contact parameter, that minimizesS( ) is computed using an
optimization algorithm to maximize §( ) as in equation [Z.9). | present a novel method
for computing the ECF in Section[3.1L.

The ECF provides the scaling that will make the two ellipsoid externally tangent:
the ellipsoidsA(x) = F(A;B) and B(x) = F(A;B), which are rescaled versions of the
original ellipsoidsA(x) =1 and B(x) = 1, meet at the contact point x, = x( (). Thus,

F(A;B) = A(X¢) = B(Xo): (2.10)

This provides a simple interpretation of the value of: if F = 1, the two ellipsoids are
externally tangent; if F < 1, the two ellipsoids overlap; and iff > 1, then the two
ellipsoids are not in contact. Also, because(0) = s and x(1) = r, the value of . is
restricted to the interval [O; 1].

The ECF provides an approximation of the distance of closeapproach between two
ellipsoids, which isd = min jxo Xg]j subject to the constraint that A(x») = B(xg) = 1.
For d > 0, this distance is bounded above by the directional contacdlistance,

|

1
dre =1 1 — 2.11
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Figure 2.1: Two ellipsoids whose centers are separatedry (black line) have a distance
of closest approachd (red line) which is approximated bydr (blue line), the distance of
closest approach that is parallel to the intercenter sepatian.

which is the distance of closest approach between the twoigdloids with the further
constraint that x5 xpg must be parallel tor s (Figure[Z1). When two ellipsoids are in
contact, both d and dg vanish, but when the ellipsoids overlapd remains zero whiledg
becomes negative. At separations,g much larger than the ellipsoids' semiaxis lengths,
the di erence between the values g, d, and dzx becomes small compared tosg .

2.2.3 The Paramonov-Yaliraki potential

Each PY site consists of two concentric ellipsoids, one rdpive and one attractive, which
modulate the interactions between sites. The pairwise emggr of PY sites is Lennard-
Jones-like: the repulsive contribution depends on the destice of closest approach between
the repulsive ellipsoids of the two sites, and the attracte contribution similarly depends
on the distance between the attractive ellipsoids. The paiise energy for two sites is

2 I 13
' 12 ‘6

U=4,4 % o 5. (2.12)

where ¢ is an energy scale,( is a length scale, andlr is the directional contact distance
between the relevant ellipsoids. At large separationsly is similar to rag, so the PY
potential is isotropic with respect to the orientations of he two ellipsoids in this limit.
The individual PY sites are parametrized by the shapes of theepulsive and attractive
ellipsoids, which are described by the three repulsive sexxes,a;;, and the three attractive
semiaxesay;, that are used to construct the ellipsoids' shape matriceslhe form of the

6
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Figure 2.2: The PY potentiaf® for the special case where the directional contact distarge
between the repulsive and attractive ellipsoids are equalhe directional contact distance
dr is in absolute units. Red line: o =1, blue line: ¢ =2, black line: ¢ =10.

PY potential is shown in Figure[Z2 for the special case whed€®™® = d® . In this thesis,
the semiaxesa;; and ay; are reported in absolute units. As a consequenady and ¢ are
also shown in absolute units. The gure shows that asg is increased, the potential has
a longer range and is softer: the externaldg > 0) minimum moves further away from
dr = 0 and the curvature at this minimum becomes less sharp. Thegure also shows the
arti cial internal ( dr < 0) minimum for o = 1. The internal minimum exists for larger

o0, but it lies at more negativedg. If o is su ciently large compared to the semiaxes
of the interacting ellipsoids, thendr will never become negative enough to sample this
internal minimum. A simulation can also avoid sampling thisninimum by performing a
check on the ECF. IfF < 1 for some pair of ellipsoids after a change in the con guratn
of the system, then those two ellipsoids overlap, and that ngurational change can be
rejected or amended.

The richness of the PY potential is due in part to its separatparameterization of the
repulsive and attractive ellipsoids. In general, the conistient ellipsoid, whether repulsive
or attractive, which extends further along a given directio from the ellipsoids' common
center will determine the behavior of the interaction alonghat direction. For example, if
a site has a repulsive ellipsoid that protrudes along the egtor and an attractive ellipsoid
that points out at the poles, the sites will prefer to stack pke-to-pole. When a PY site is
depicted in this thesis, the repulsive ellipsoid is showi.

A method for cutting o the PY potential's interaction at a surface of constant po-
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tential is included in Section[3.2.

2.3 ldentifying minima on the PES

Choosing a potential and a system of building blocks produe&a PES. Because minima
lie at the “bottom' of local areas of the PES, they are easy tond: proceeding “downhill’
from almost any point on a well-behaved PES will lead to a lotaninimum. This mini-
mization, along with the attendant computation of the potetials, is typically the most
computationally expensive part of a simulation that sampke the PES, so it is important
to use the most e cient algorithm possible.

Although there are exact solutions to certain speci ¢ miningation problems, most
minimization algorithms are iterative, meaning that they poduce a series of coordinates
that hopefully converge to the desired minimun¥? lterative methods divide into three
groups based on the input they require to minimize a functiofi. The rst group of
algorithms only require the functionf as input. Algorithms in the second group requiré
and its gradientf %52 and those in the third group requiref , f % and the Hessiarf ® The
analytical form of the gradients of all the potentials usedni this thesis are known, but
algorithms involving the Hessian tend to be ine cient®3 so all simulations here have used
an iterative gradient method, the limited memory Broyden-fetcher-Goldfarb-Shanno (L-
BFGS) algorithm 3455 [ jke other quasi-Newton methods, the L-BFGS algorithm creas
a sequence of approximate Hessian matrices from the functiand gradient data. Our
version of the algorithm uses a modi ed step length scalinghich is more e cient than the
line searches used in the original algorith#® Among the gradient methods, the L-BFGS
algorithm is very e cient. 8238

2.4 Global optimization using basin-hopping

In many applications, from nance to operations to physicsit is important to nd the
low-lying minima of a multivariate function22 In chemistry, the low-lying minima on the
free energy surface will host the greatest populations whene system has equilibrated.
At zero temperature, the global minima on the PES and the freenergy surface coincide,
so the low-lying minima on the PES provide approximate infenation about the struc-
ture and thermodynamics of the modeled systef¥#? Under the right circumstances,
a minimizer like the L-BFGS algorithm nds a single minimum gven a single starting
point. The behavior of the minimizer is purely local, so the imimizer alone is incapable of
global analysis of the PES. To nd global properties of the P&, most notably the identi-



ties of the low-lying minima, the minimizer must be combinedvith a global optimization
routine.

Global optimization methods divide into two broad categogs, exact and heuristiéX
Exact, or deterministic, methods nd a local minimum of the nput function and produce
a certi cate that guarantees that this minimum is the globalminimum. Because locating
the global minimum on a general PES is an NP-hard problef,exact methods that use
no a priori knowledge of the PES are computationally expensive. Heuiistor stochastic,
methods produce local minima but without any guarantee thaany one of these minima is
the global minimum. Heuristic methods are more likely to nd the global minimum if they
are biased toward producing structures that include the ghal minimum 22 Useful biases
must be di erent for each system, and biasing strategies canake the global minimum
more di cult to nd if the strategy is formulated incorrectl y. Notable unbiased heuristic
global optimization methods include genetic algorithm®? simulated annealing®® taboo
search?/8 |andscape paving and deformation methodg®42

All the simulations in this thesis used the basin-hopping hygrsurface transformation
method®%5% |n this method, a transformed landscapd is obtained from the PESU by
local minimization such that

B(x) = U[locmin(x)]; (2.13)

where locmink) returns the coordinates of the local minimum obtained froma local
minimization with starting coordinates x. The energy of each poink on 8 is the energy
of its local minimum locmin(x) on U, so the landscape is transformed from a smooth
undulating surface to a series of plateaus (Figufe 2.3). xfis a local minimum onU, then
U(x) = B(x).

This hypersurface transformation must be combined with a gbal optimization method
to sample the transformed surface. The simulations in thihesis were produced using a
Monte Carlg®® (MC) routine that proposes steps along the untransformed siace U and
accepts or rejects the moves based on the change in energy lmm transformed surfaceS.
The routine is:

1. Start from a local minimumx,, on U.

2. Perturb x, to a new positionx® These perturbations are designed to be unbiased
and to be large enough so that locmix(® might be distinct from x.

3. If

(@) B(x9 < B(xn) or



Figure 2.3: A schematic energy landscapé (thin line) and the landscape® (thick lines)
obtained by the basin-hopping hypersurface transformatiode ned in equation (Z13).
nh i. O
(b) B(x% > B(x,) andexp B(x,) ©B(xY T >X,whereT O0isatem-
perature parameter andX is a random number drawn from the continuous
uniform distribution between 0 and 1,

then accept the MC step by starting a new cycle with .+, locmin(x9. Other-
wise, reject the MC step by generating a new? from x,.

In simulations of systems of rigid bodiesx? is produced by separately perturbing the
translational and orientational parts of the coordinates beach rigid body (Figure[Z#).

The basin-hopping MC routine and all the attendant potentids used in this thesis are
included in the software package GMINZ

2.5 Visualizing the PES using disconnectivity graphs

It is not feasible to visualize the PES with a straightforwad graph ofU since the number
of coordinates, ®, is too large. Such a graph, if it could be produced, would alshot
help the viewer identify low-lying minima or determine how e minima are connected.
These two pieces of information can be handily combined in asdonnectivity graph.

A disconnectivity graph is produced through “superbasinmalysis® For some energy
E, the minima on the PES can be grouped into superbasins. Twomina are in the same
superbasin if there is a path on the PES that connects them amvdhich never exceeds the
energyE. Two minima are in di erent basins if every path on the PES tha connects
them has at least one point whose energy excedsls A disconnectivity graph consists of

10
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Figure 2.4. MC perturbations made to each rigid body in a simated system. a) The
rigid body's position (red dot) is perturbed to a new positia (e.g., any one of the black
dots) distributed uniformly inside a speci ed radius (graysphere). b) The rigid body's
orientation (red arrow) is perturbed to a new orientation (e3., ending on any one of the
black dots) distributed uniformly on a spherical cap (gray wrface).

a series of nodes corresponding to the superbasins at a sedediscrete energiek;. A
node at energyk; is connected to a node at energl;., if the minima in the superbasin
represented by theE; node are also in the superbasin represented by tkg.; node.

If the E; are chosen properly, the bottom of a disconnectivity graphhsws individ-
ual minima on the PES. The global minimum is represented by thlowest node on that
graph. If the PES has no in nite barriers, the top of the graphwill consist of a single line
that represents the superbasin that contains all the miniman the PES. Self-assembling
systems probably have disconnectivity graphs with “palm ¢e' motif$® (Figure [2.8). Sys-
tems with palm tree disconnectivity graphs su er no signi @nt traps that would prevent
the system from relaxing to a global minimum relatively quikly.

The superbasin analysis as described would require exhawstsampling of the PES,
which is not computationally feasible. In practice, the disonnectivity graph is constructed
using the Murrell-Laidler theorem2858 which states that if two local minima have a
connecting path that runs through a saddle point with indexwo or greater, then there is
another path that runs only through transition states. The heorem also states that the
maximum energy along this path is lower than the maximum engy along the original
path. Thus, a disconnectivity graph can be assembled by idiiging the transition states
that connect pairs of minima generated during a heuristic gbal optimization routine. If
the energies of transition states that connect two minima areach less thatt, then those
two minima are part of the same superbasin fdE.

The routines for identifying minima and transition states ad assembling them into
databases are included in the software packages OPT#and PATHSAMPLE.58

11
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Figure 2.5: Schematic energy landscapes (left) and the cesponding disconnectivity
graphs (right) produced using superbasin analysis at the ergies marked by dashed
lines?? &) In a “palm tree' motif, there are low downhill barriers towad the global
minimum, which is well separated in energy from other minimab) In a “willow tree'
motif, there are larger downhill barriers.c) In a "banyan tree' motif, the barrier heights
are much larger than the energy di erence between minima, drthe global minimum is
not well separated in energy from other low-lying minima.

12
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Chapter 3

Novel methods

3.1 Casting the elliptic contact function as a polynomial root-
nding problem

3.1.1 Introduction

The elliptic contact function (ECF) of two ellipsoids is
F=fmaxS( )j 2 [0;1]g; (3.1)

where
)= @ X'[@ HA+ B]x; (3.2)

where in this chapterA and B are theinversesof the shape matrices of the two ellipsoids
in the lab frame and x is the vector separating the centers of these ellipsoids. iEh
expression apparently depends on in a complicated way, and the standard method
for nding the contact parameter . that minimizes S is to plug equation [3:2) into an
optimization routine that does not require a gradient or Hesan (e.g., Brent's metho?).
A brute force expansion of equation(312) shows th&( ) can be written as a rational
function. The term (1 ) contributes a second-order polynomial to the numerator,
while the inverse matrix contributes a second-order polymaial to the numerator and a
third-order polynomial to the denominator. Thus,
ol (3.3)
i=0 g !

T U
wﬁh

()
)= °

where thef; and g are functions ofA and B and do not depend on . (In this chapter,
' means to the i-th power.)

13



This reformulation shows that maximizing the matrix quantty in equation ([3.2) is
equivalent to maximizing the rational function in equation(3.3). BecauseS( ) is rational,
the derivative dS=d = SY ) is also rational. MaximizingS( ) is therefore equivalent to
nding the root of the numerator of S ). Finding the root of a polynomial over the
range [Q1] is, in some ways, an easier problem than maximizing the nnixt quantity in
equation (3.2).

Some simple calculus shows that the numerator & ) is a sixth-order polynomial.
Let this polynomial be calledh( ) = i6:0 hi ', where theh; are functions of thef; and
0. Becauseh( ) is just a polynomial, its analytical derivative is easy to alculate, and
Newton's method is an e cient approach to nd the root of h( ). The position of this
root is the contact parameter .. Once . is found, it is a simple matter to compute
F=9 o).

When using Brent's method and the matrix formalism to nd . for the simulations
described in this thesis, about 10 iterations were requirdd compute . to within 10 6.
Computing the polynomial coe cients constitutes a higher @erhead, but the cost of each
iteration is lower. Newton's method also requires fewer stepand in most cases less than
5 iterations were required to nd the root ofh( ). Altogether this improvement has led to
a 1.5 times speedup for the computation of the entire PY potéal for all but the smallest
systems.

In this section, | will derive expressions for the coe ciensf;, g andh; and demonstrate
that the intermediate quantities used to compute the coe cents have certain properties
that simplify the computation of the coe cients.

3.1.2 Coecientsof S

The f; and g depend onA and B in a complicated way. Writing expressions for these
coe cients requires a careful consideration of the propekts of A and B, the cofactor
matrices of A and B, and another matrix € that mixes these cofactor matrices. In
this subsection, | will derive expressions for the entried &, B, the cofactor matrices
of A and B, and €. Next | will de ne some auxiliary quantities A , B , and C using
these matrices. The coe cients ofS can be compactly written in terms of these auxiliary
guantities.

Inverse shape matrices

Let the two shape matrices in their diagonal representatianbe A° and B% Let the
rotation matrices beR and S such that the shape matrices in the lab frame arBRA RT
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and SB %ST. Then the inverse shape matrix in the lab frame is

A= RART * (3.4)
= RT 'A°'R 1 (3.5)
= )R(’A 0 IRT (3.6)
Aj = A% RimRinm: (3.7)

m

Note that detA = (det A9 *and A = AT. These results also hold foB .

Cofactor matrices

The cofactor of the ;j )-th entry of the matrix A is ( 1)""IM;, where M;; is the de-
terminant of the submatrix obtained by removing thei-th row and j -th column from A.
The determinant of A can be written

X
detA = Aij Mij (3.8)

for any j, and the inverse ofA is

T

A
1_ .
A TS Geta’ (3.9)

where& is the cofactor matrix for A. The entries in the cofactor matrix are the cofactors
of the corresponding entries of the original matrix. Becae®\ is a 3 3 matrix, its cofactor
matrix is easy to compute:

& = AivrjaAiszgez Az Aisrge2 (3.10)
= AOmrlnAOnn1 Ri+1;mRj+1;m|:ai+2;n|:zj+2;n (3.11)

mn
Ri+2;m Rj +1;m Ri+1;n Rj +2:n (312)

X
= Aomil;m+1 Aomiz;m+2 Rim ij ; (313)

m

where index addition is modulo 3 (e.g.Ai.3+1  Ai.1) and | have used the fact that the
rotation matrix R is equal to its own cofactor matrix. In this form, itis clear hat & = &
and similarly B = B These symmetries simplify the implementation of the algahm.
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De ne also the matrix € with entries

Cj = (Ais1j+1Biszj+2 Air1j+2Biszgj+1) (3.14)
+(Bisj+1Airzj2  Birrj+2Aizj4):
Note that the rst bracketed term would be &; if the B's were replaced withA's, and
that the second term is the same as the rst but with theA's and B's reversed, sc€ is
a matrix that mixes the cofactor matrices ofA and B . Using the equations forA; and
Bj , one can nd that

X
€ = A°.BO%. (fourterms of form RRSS): (3.15)

mn

When written in this form it is straightforward to identify t he terms that are symmetric
under exchanges $ j andm $ n and thereby show that€ = e'.

Because& and B are functions of the parameters of a single ellipsoid, thoseatrices
can be computed once per ellipsoid at the beginning of an aysik of a given con guration
of ellipsoids. The matrix € depends onA and B together, so€ must be computed for
every pair of ellipsoids.

Expressions for f; and g

De ne also X

A =x"Bx = XiX; i (3.16)
1)

and similarly de ne B and C . By brute force expansion ofS in equation (2.9), it can

be shown that the numerator ofS has coe cients

fi= A (3.17)
fo= 3A +C (3.18)
f;=3A +B 2C (3.19)
fs,= A B +C: (3.20)
For the denominator de ne
X
D = Aj By (3.22)
X
E = Bij & : (3.22)



(D is called the Frobenius inner product oA andB.) The coe cients of the denominator
of S are then

Qo = det A (3.23)
o= 3detA+E (3.24)
g =3detA+D 2E (3.25)
= detA +detB D +E: (3.26)

3.1.3 Coecients of £

Straightforward di erentiation of the rational expressian for S shows that the numerator
of S” has coe cients

ho = f10 (3.27)
hy = 2f 0, (3.28)
hy =3fsg0+ foon  fig (3.29)
ha =4fs00 +2fsn  2f10s (3.30)
hy=3fan+ fag  f20s (3.31)
hs = 240 (3.32)
he = f40s: (3.33)

The derivative of h( ) = i °,hi issimplyh )= i (- jhj 1 % Applying Newton's
method to nd the root of hlis straightforward. However, Newton's method often moves
outside the range [Q1] in which the root . must lie. In my implementations, | substitute
a bisection step when Newton's method attempts to move to a piien outside the range
of possible solutions.

3.1.4 Special case: A°= B °with two equal eigenvalues

If A°= B%and two of the diagonal elements oA °are equal, then the termgs vanishes.
This special case arises frequently, since the ellipsoidsed in simulations are often el-
lipsoids of revolution, which have two equal semiaxes. Fimérmore, oncegs vanishes,
then hg vanishes, so the root- nding algorithm needs to compute a th- rather than a
sixth-order polynomial in this case. The proof thag; vanishes under these circumstances
is laborious but not complex.

If A°= B then detA =det B, so the rst two terms of gz cancel, leaving D +E .
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To show thatD = E , rewrite D as
! I

— X 01 X o1 o1
D = Am Rim Rjm B h+1:n+1 B ns2in+2 Sin Spn (3.34)
ij m n I !
X 01o0d 01 X X
= A mm B n+1;n+1 B n+2;n+2 Rim Sin ij Sjn (3-35)
n [ j
2
= Aom:.n Bonjl n+l BOn+12 n+2 R T S mn : (3-36)
mn
Similarly,
2
E = BOmI:‘Ln AOnJill;n+l AOnJiLZ;n+2 STR mn (3-37)
n
1 1 1 2
= BOmm'D‘On+l;n+l'0‘0n+2;n+2 RTS nm . (3-38)

mn

SinceA%= B? the only dierence betweenD and E is the order of the subscripts in
the last term.

Now because two eigenvalues &f and B are equal, set (without loss of generality)
A9, = AY,. ThenD andE consist of three groups of terms: ones proportional té\% " 3,
to A% A%l andto A% A% . These groups occur fomn: 13 23; 1122 33 12 21;
and 31, 32 respectively. Swappingn $ n swaps the rst and last group ofA °and B °but
leaves the middle group unchanged. Thus, swappimg$ n in the sum requires that the
indices on theA°and B % also be swapped, bringing them back to their original places

Thus, each term in theD and E sums are equal, s® = E andg; =0.

3.2 Cuto s for the PY potential

Because the PY potential is both position- and orientatiordependent, it is inappropriate
to cut o the potential using the intercenter distance alone This formulation can produce
discontinuities in a simulation using periodic boundary auditions, since there are situa-
tions in which one image of an interacting ellipsoid has the immum intercenter distance
but not the minimum directional contact distance to the othe interacting ellipsoid.

It is useful to rewrite the PY potential asU = Uyep + Ua, Where

Urep =4 OGre:FL,Z (3.39)
Uat = 400G, (3.40)
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h i.
and G, = di + , asin equation [ZIR). A potential with a Stoddard-Ford-
like®? cut o is then

( ! , #
Grep

Uep=4 0 Gy + G 6 = 7 (3.41)

( v #)

Gar -
U =40 Guf+G,° 3 25 +4 (3.42)
C
where G, is the cut-o value for G. The gradients are

Ugp =48 0 Gip’Gpp + G, GiepGry (3.43)
Uzgtt =24 GatZtht G, ®Gat tht : (3.44)

The derivatives of G can be computed from the derivatives of g and F, which are
known?581 |n this modi ed potential, Grep and G4 reach zero smoothly aiGe.

It is usually more natural to de ne a cuto distance d., and this can be easily converted
to Ge(de) = (de+ o) = 0. When G, = Gu, the potential reaches a fraction of its
minimum value at a directional contact distance

=1 o (3.45)

For example,d.  1:2 o would cut o the potential at the surface where the absolute
value of the potential had originally fallen to 1% of its minnum value.

3.3 General method for transforming site-site orientation al gra-
dients to rigid body gradients

3.3.1 Introduction

In coarse-grained modeling, it is common to construct rigidodies from sites whose pair-
wise interactions are known. Rigid bodies of LJ sites have d&® used to model ortho-
terphenyl®2 The Stockmayer particle, used in uid models, consists of alLsite and a
dipole site®364 Helix-forming “dumbbell' building blocks are constructedrbm two LJ
sites and a dipolé® Building blocks of PY ellipsoids and LJ sites have reprodudechiral
clusters and capsid-like structure$5%7 DNA can be modeled by a building block with
one site for the backbone and one site for the ba%e.

More complex models might require multiple sites whose ptiens and orientations
di er from those of the entire rigid body. In order to perform simulations using these
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building blocks, it is necessary to transform the gradientsf the potential with respect to

the coordinates of the interacting sites into gradients wit respect to the coordinates of
the two rigid bodies. As will be reiterated here, transformig the translational gradients is

trivial. Furthermore, in most cases, the orientational grdients can be transformed using
properties speci c to the potential. Here | provide a generamnethod for transforming

site-site orientational gradients to body-body gradientsvithout any appeal to the form

of the potential.

3.3.2 De nitions and notation

A rigid body | has a positionr' and angle-axis rotationp'. In the angle-axis framework,
the orientation of the body | is described byp': the body is transformed from some
reference geometry to its lab frame orientation by rotatinghe body about the unit vector
p' through an angle p' . Although p' is sometimes called the angle-axis vectop is
not a vector in the proper sense, since simply adding the cooments of two angle-axis
rotations is not equivalent to concatenating the two rotatbons they describe. Eachp'
corresponds to a rotation matrixR ' .

Body | consists of sites, each with molecule frame position'°, molecule frame angle-
axis rotation p'°, and molecule frame rotation matrixR'°. Each site also has lab frame
positionr ', lab frame angle-axis rotatiorp', and lab frame rotation matrix R'. Two rigid
bodiesl and J have a pairwise energyJ"” that is the sum of the site-site energiet’
over all sitesi in body | and all sitesj in body J.

In accordance with previous worE! R' @ '=@'p In accordance with typical usage,
R refers to the entry of the matrix R in row and column . The use of bold-face
should make this use of notation unambiguousR' andR' are both matrices, butR' is
an entry of R' and p' is a component ofp'. | use the Einstein summation convention for
matrix and vector indices. The metric is the identity in theg cases, so upper and lower
indices have no particular meaning.

3.3.3 Radial terms

The center-of-mass forces just add up, so

ev X X @i
@' @

i21 j2J

(3.46)

20



SinceUV = UJ' and Ul = U/, it follows that

@ _X X @@_
@’ @

i21 j23

(3.47)

In most cases where the potentiall; does not depend on a bond angle, we can avoid
computing the derivatives with respect tor! because

(@]7) _ Qy . 3.48
= — (3.48)
3.3.4 Orientational terms

The orientational terms have contributions from both the ge-site radial gradients and
the site-site orientational gradients, since

@y _X X @u
=i == (3.49)
@b i2l j23 @b

XX @eu @ aeu

T @O @@ 250

The derivatives ofU are the site-site gradients that can be computed from eachdividual
potential. This leaves the derivatives of the site coordinasr' and p' with respect to the
body orientational coordinatesp'.

Contributions from site-site radial terms

Previous worl? has shown that

@i: I i0.
@b R'r'™: (3.51)

Methods for computing the rotation matrix derivative R' are given in the same publica-
tion.
Contributions from site-site orientational terms

In the simplest case, the site and the molecule have the sanréntation so that p' = p',
and @'=@"' in equation (3.50) is just the identity. However, if the site las some nonzero
orientation p'® in the molecule frame, then the derivative can be broken dovioy appealing
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to the entries of the rotation matricesR' that correspond to the relevant rotationsp':

@b_ @ @R
@~ @R @b

(3.52)

The value of this approach is that it allows the second tern@R'=@' to be written in
terms of known values. The lab frame rotation matrix for sitd is R' = R' R‘O, where
R'C. the molecule frame rotation matrix for sitei, is constant. Thus,

@R

@b - R'R (3.53)

This matrix can be found by computing the matrix product of the rotation matrix deriva-
tive for the body, R', and the body frame rotation matrix for the site,R'°. Note that the
algorithm used to computeR' from R' may not be used to compute@ '=@' from R'.
That approach would produce@ '=@', the derivatives of the lab frame rotation matrix
for the site with respect to the lab frame angle-axis componts for the site, which is of
no help in working out equation [3.5PR).

The rst term @'=@' in equation (3.52) is more complicated. To compute the
derivative of the site's angle-axis vectop' with respect to the entries in the corresponding
rotation matrix R', we can appeal to the transformation from rotation matriceso angle-
axis vectors:

0 1
Ras;  Ras

arccos 2 (TrR 1) 3
p(R)= -+ i > %RB R3l£ (3.54)
2 1 1 (Tr R 1) RZl R12

Xy; (3.55)

where X %arccosT=p 1 T2andT %(Tr R 1). Noting that

@@RX T 20 : T?) Tz%r% % (3.56)
@?—F{ = : (3.57)
where is the Kronecker delta and is the Levi-Civita symbol, we have one set of terms
for the diagonal = and another set for the o -diagonals. Putting them togetherields
@b _ 1 arccosT 1 arccosT

T P

= = ) 3.58
@rR 21 19 217w 2 Y PT (3.58)

22



whereT andy are computed usingR .

It should be noted that the values@p=@R are not the numerical reciprocals of
@R =@p= R' . For most rotation matrices, all the elements o@R =@ are nonzero,
but @=@ will always have zero elements, since, e.gny(R) does not depend orR,,
Ris, R21, or Rz;. Analytically, it is clear that this approach is invalid since there is no
one-to-one correspondence between rotatiopsand matricesR in this formalism. Angle-
axis rotations and rotation matrices have a one-to-one rdlanship only if orthogonality
of the matrices is enforced.

The values that make up@'=@' need only be computed once pe®'=@'. Combin-
ing the second term@'=@ "' with @R'=@' in equation (3.52) requires a Frobenius (i.e.,
entry-wise matrix) product over and . This makes this method more computationally
expensive than computing the body-body orientational gradnts by appealing to the form
of the speci c potential where possible.
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Chapter 4

Designing left-handed structures from
right-handed building blocks

4.1 Introduction

Previous worl®8567 has shown that achiral building blocks modeled by sites intacting
via an ellipsoidal Lennard-Jones-like potential self-asmble into chiral helical structures.
This chirality was associated with broken symmetry in the nmimum energy con guration
of the dimer when two ellipsoids prefer to stack o -center rher than directly on top of
one another.

If achiral building blocks can produce chiral structures,ten what is the relationship
between the chirality of building blocks and the chirality & the structures into which they
assemble? It is natural to assume that molecular chirality nambiguously determines
the chirality of a material so that a molecule of one partica@r handedness will produce
materials of one particular handedness. Nevertheless, expeental evidence in amyloid
brils, 8270 jnsulin 272 chiral phospholipids™ and cellulos&* has demonstrated that this
relationship is ambiguous: in nature, some right-handed rtexules produce mixtures of
right- and left-handed materials. It is unclear whether thé ambiguity is due to properties
of the building blocks, stochastic e ects, or the speci csfahe material's preparation”8!

Probing the relationship between the chirality of buildingblocks and of their assem-
bled structures requires a building block with adjustabletarality. Taking inspiration from
experiments that produce helices of adjustable pitch usirgjosely related molecular build-
ing blocks® and experiments that produce nematic phases with temperat+controlled
pitch, 8381 we have investigated the self-assembling structures thaésult from building
blocks with adjustable chirality. These building blocks casisted of pairs of ellipsoids
joined side-to-side in a rigid body that roughly resembles bowtie. Over most of the
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Figure 4.1: Cross-section of a Paramonov-Yalir&Ri site as parameterized in this study,
showing the repulsive ellipsoid (red), the attractive elpsoid (blue), the repulsive equa-
torial semiaxis (Q5), the attractive equatorial semiaxisa,;, and the polar semiaxisa;s
common to both ellipsoids. In these parameterizations, thevo ellipsoids have a common
equatorial plane and the same north and south poles.

parameter space we explored, right-handed bowties asseenbito right-handed helices.
However, certain sets of right-handed bowties assemble ir#&dt-handed helices. This be-
havior can be understood and predicted by analyzing the intaction of building blocks
within a conformational subspace. Hence we provide quantttee design principles for
constructing helical morphologies that only require expenental or simulation data within
this subspace.

4.2 Methods

4.2.1 The Paramonov-Yaliraki potential

We used the Paramonov-Yaliraki (PY) potentia¥ to model the interactions between the
ellipsoids in the bowties. The individual PY sites are paragtrized by the shapes of the
repulsive and attractive ellipsoids, which are describedylthe three repulsive semiaxes,
ai;i, and the three attractive semiaxesa,;. The parameterization used in this study is
depicted in Figure[4.1. The repulsive and attractive elligsids are ellipsoids of revolution,
and there are two free parameters: the polar semiaxis,s, which is common to both the
repulsive and attractive ellipsoids, and the attractive egatorial semiaxis,a,;. Both a;3
and a,; were systematically varied to elucidate design principlesr the building blocks
described below.

4.2.2 The building blocks

In this study we examined structures formed from identicaligid bodies composed of
two equivalent PY sites (Figure[4.2). The centers of the sitewere separated by the
repulsive equatorial diameter, and the equatorial planed the two sites in the building

block intersected along a line that runs through the centersf both sites. The angle
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Figure 4.2: The bowtie building block consists of two ellimsds joined side-to-side. The
dihedral angle is the angle between the equatorial planes of the two sitestime building
block. The =0 bowtie is achiral, the =45 bowtie is right-handed, andthe = 45
bowtie is left-handed. The side views show that the = 45 bowties are mirror images
of one another and cannot be superposed.

between the equatorial planes of the two sites is the dihedrangle .

For =0, the two sites in the pair have the same orientation, and thegeatorial
planes of both sites coincide. In this case, the building lik has D,, symmetry and
resembles a bowtie whose “wings' are in perfect alignmenteWbnsidered building blocks

with =0 as limiting cases because thB,, point group is achiral. Although building
blocks with = 90 are also achiral, they do not form helices and we do not conerd
them here.

Bowties with 0 < < 90 have D, symmetry and are therefore chiral. Bowties
with dihedral angles 90 < < 180 correspond to bowties with 90 < < 0 and are
therefore mirror images of bowties with 0< < 90 . As a convention, we de ne building
blocks with 0 < < 90 as right-handed. Holding a = 0 bowtie in front of you, a
right-handed pair is then formed by twisting your right thumb through the angle away
from your body while keeping your left hand xed.

4.2.3 Exploring the landscape

Global potential energy minima for clusters of bowtie builshg blocks were identi ed
using the basin-hopping®>282 program GMIN >3 which takes steps between local minima
on the potential energy surface by randomly perturbing the g@sition and orientation of
each building block. Translational perturbations were urformly distributed in a sphere
with a radius of the same order as the building block's size @:0) and the orientational
perturbations were uniformly distributed over 1.0 radian. Perturbations that produced
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overlap (F < 1) were discarded. If three sets of randomly-selected stiaug coordinates
all produced the same lowest minimum, we accepted this sttuce as the putative global
minimum. Otherwise we increased the number of basin-hoppgjrsteps until this criterion
was met.

In studies of the structures formed by single PY sites, only &w hundred basin-
hopping steps were required to reach consistency betweemsustarting from distinct
con gurations 22 However, for the bowtie building blocks, tens of thousands efeps were
required to reach the same kind of consistency. The increaselandscape complexity is
probably due to the di erences in the interaction range panameters ( used in the two
studies. The study of single-site PY building blocks used, = 1, 18, and 30, while in this
study we used only o = 1. Decreasing the interaction length scales probably makehe
energy landscape more rou§¥€:84 and makes it more di cult to identify global minima.

4.3 Results

4.3.1 Bowties assemble into helices

Over a large part of the parameter space &3, a,;, and , the global potential energy
minimum for a cluster of these bowtie building blocks condg of segments of helices.
Building blocks with =0 assembled into achiral stacks, which are the limiting casé o
helices as the helix pitch diverges. We explored the regioninded by 01 a3 0:5and
0:1 ay; 0:5. Figure[4.3 shows a disconnectivity graph, a visualizatioof the energy
landscape?’> for one particular parameterization. As discussed in Sectid®.3, most of
the graph looks like a palm tree. There are, however, a few @resting features separate
from the main funnel. In this example, the main funnel consis of minima that have
two helical strands. In some, like minimuma, the two strands are joined. In others, like
minimum b, “caps’ sit on top of or below the two strands. The bottom of t& main funnel,
minimum c, has two strands of equal length. The global minimund, which is separated
from the rest of the minima by a high barrier, is a single helixor this parameterization.
Because the main funnel has a palm tree shape, we expect thaplaysical realization of
these bowtie building blocks would self-assemble into hedis or stacks.

Figure[4.4 shows the parts of this parameter space in whichelglobal minimum energy
con guration consists of stacks when the parameteris xed at 0 . The rotation angle ,
which is the angle between corresponding axes of the bowtigsianti es the chirality of
the helices. Stacks have = 0. As a convention, we use > 0 to describe a helix that is
right-handed in the sense of Figure~4.5. In general, the chlity of the helix matches the
chirality of the building block, so achiral building blocks( =0 ) produce achiral stacks
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Figure 4.3: A part of the disconnectivity graph for 12 bowtidbuilding blocks (a;3 = 0:15,

ay; = 0:28, = 23), showing the organization of the landscape for the minimat @he
bottom of the main funnel. Energies are measured in.
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( =0 ), right-handed building blocks ( > 0 ) produce right-handed helices ( > 0),
and left-handed building blocks (< 0 ) produce left-handed helices (< 0).

4.3.2 Changes in morphology of the global minimum can be pred icted

Because the global minima are generally helical in the regiof parameter space we
considered, it is useful to de ne a reduced potential energiandscapeU( ;d) whose
coordinates are the two parameters that describe a singlelie the distance d between
the centers of adjacent bowtie building blocks and the rotan angle . Becaused is
mostly unrelated to the investigation of chirality, the poential energy landscape can be
further reduced to one with a single coordinate by de ning

@():mir]j U( ;d): (4.1)

The function 8 is well-de ned becausdJ has only one minimum ind with  xed.
The 8 landscape is useful for identifying morphological transins in the parameter
space. For example8 for bowties with =0 and low attractive equatorial semiaxisay;
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Figure 4.4: Regions of the parameter space af; and a,; for which the global minima of
clusters composed of bowtie building blocks with =0 consist of either stacks or more
isotropic clusters of bowties. Two global minima foN = 10 and two parameterizations
(black dots) are shown: one stackajs = 0:2, a;; = 0:3) and one cluster &3 = 0:2,
dp1 = 04)

has one minimum at =0 . For higher ay;, a local minimum of higher energy forms at

=90 . As ap; increases, the energy of the =90 minimum decreases and the energy
of the =0 minimum increases. At a critical value ofa,;, the two minima are equal
in energy. At this point in the parameter space, the = 0 minimum is no longer the
global minimum as viewed in the reduced energy landscape lwitoordinatesd and . It
is also at precisely this value oé,; that the con guration corresponding to the minimum
in B is no longer a local minimum in the complete -dimensional landscape, wherhl
is the number of building blocks. Hence this value af,; represents the boundary of the
helix-forming part of the parameter space for = 0 shown in Figure[4#. A similar
analysis applies for 6 0 , but here the minima in 8 are displaced away from =0
due to the broken symmetry.

In general, increasinga,; out of the helix-producing region of the parameter space

yields structures that are more and more isotropic. At rst,the helix breaks into a
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‘ladder' where adjacent bowties are staggered. For highealves, the helix bends over
and loses its helical topology. For very high values @k;, the potential energy minima
are clusters with no particular directionality (Figure[4.3.

4.3.3 Using single helices

For a small number of building blocksl . 10), the global minimum energy con guration
consists of a single helix. For largeN, the global minimum consists of multiple helices
attached side by side. Although it is more energetically favable for bowties to stack on
top of one another than to attach side by side, forming multiie helices breaks a single
top-to-bottom contact and creates multiple side-to-side antacts. Hence this change in
structure is energetically favorable for largeN . The con guration of the global minimum
also depends omy3, a,; and . For example, in Figurd4.B, the single strand is the global
minimum. In the system with the sameN, a;3, and a,; but with  changed from 23 to
0, the global minimum is not a single stack analogous to the gjte helix in Figure[4.3.
Instead, the global minimum consists of two associated stecanalogous to those at the
bottom of the main funnel in Figure[48. In general, the glodaninimum is not a single
helix.

Having veri ed that the global potential energy minimum con gurations all consist of
helices or achiral stacks, we measured the relationship imeen the dihedral angle of
the building blocks and the rotation angle of single helice. Although a single helix is
usually not the global minimum, the relationship between and is much clearer in this
minimum, since the interactions between side-by-side strds cause the rotation angle of
the global minima to depend strongly orN. To measure ( ) without this complication,
we set up long N = 100) helices of bowtie building blocks with 0L < d < 1.0 and

90 < < 90 and evaluated their energies without relaxing the structie. We then
relaxed the helix with the lowest energy. The result was alwa a single helix, that is, the
single minimum on the® landscape forN = 100.

Because the helices were so long, edge e ects were neghkgilthe rotation angles
between the middle ten building blocks were equal to one am&r to within less than
0:001, and these angles changed by less than 1% when the number afdig blocks in
the helix was changed to eitheN =50 or N = 200. Hence the rotation angle between the
two centermost building blocks in a singléN = 100 stack provided a reasonable measure
of foragiven . Although the precise numerical relation between and in the global
minima is di erent from the relation in the single helices waneasured, the general trends
described below appear to apply in both cases.
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Figure 4.5: The relation ( ) for bowtie building blocks composed of PY sites of inter-
mediate anisotropy @3 = 0:15, a,; = 0:28). The helices are segments of tHg¢ = 100
helices used to compute the relationship () shown in the graph. The curve in the graph
terminates at the critical value of after which the local minimum energy con guration
is no longer a helix.

4.3.4 The chirality of the building block determines the chi rality of the helix

The relationship between the building block dihedral angle and the helix rotation angle

exhibits two distinct characteristics across the helix-brming parameterizations ofa;3
and ay;: is mostly proportionalto  when is small, and falls with increasing when

is beyond the linear regime. For example, Figufe’4.5 shows |} for a bowtie composed
of ellipsoids of intermediate anisotropy. Achiral buildingblocks ( = 0 ) produce an
achiral stack ( =0 ). For . 15, is proportionalto ,and fallsfor & 20.

The linear relation is caused byn-chain attraction and the competing trend is caused

by cross-chain repulsion The relative importance of these two e ects can be tuned via
the parametersa;3 and ay;.

4.3.5 In-chain attraction causes to increase linearly with

Attraction between corresponding attractive ellipsoids fonearest-neighbor building blocks
leads to the linear relationship between and . In stacks with small , the value of

is the one that minimizes the distance between the north polaf the lower ellipsoid and
the south pole of the upper ellipsoid. If the distance betwaethe centers of the bowties
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were xed at d, the distance between the two poles would be

2
a21(1 Cos ) ai3 sin E sin

2 2 1=2
+  apsin + algsin§(1+COS) + 2a13cos§ d ; (4.2)

which is minimized when

2 (a13=a1) Sin( = 2)

= arctan 4.3
1 (313:891)2 sin’(=2) “3
Fora;s  ayy, 2 (a13=&3) sin (= 2). Since 2sinE 2) to within 5% for0 < <
60 , we see that (a13=&1) . This analysis quantitatively predicts the slope of the

linear parts of the ( ) curves.
Decreasing the attractive equatorial semiaxiay,; increases the range of over which
is linear. In the limit ap; ! 0O, the attractive ellipsoids reduce to rods whose endpoints
lie at the poles of the two ellipsoids. The point of closest gpoach between the attractive
ellipsoids in a chain will be at the ends of rods. In this casd, is clear that in-chain
attraction seeks to minimize the distance between the pole$ the two ellipsoids.

The energy of the helices increases asincreases until some maximum value of.
This critical value decreases from about 60for larger a;; down to O asa,; reaches the
boundary where the morphology of the global minimum changésr =0 (Figure [4.3).
Increasing beyond this value causes the helix to collapse into a more tisipic cluster.
The increased energy and consequently decreasing stapilére due to the increasing
distance of closest approach between attractive ellipsgidn the same chain.

4.3.6 Cross-chain repulsion causes to fall with

The decrease in at larger is easy to understand by considering th&@ landscape.
The minimum energy structures in 6l -dimensional space correspond to minima on this
surface, so the gradients of the four energy contributionsn¢/cross-chain and attrac-
tive/repulsive) with respect to at the minimum determine t he relative importance of
the various e ects. At these minima, in-chain attraction bases to higher values, but
cross-chain repulsion causes to fall to the observed smatl values. Thus, cross-chain
repulsion dominates the behavior of for larger .

Because the points of closest approach for the repulsiveipdbids are at the “tips' of
the bowtie's "wings', nearly isotropic repulsive ellipsds have a cross-chain repulsion that
remains mostly constant with (Figure [4.6). In this case, the behavior of is wholly
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Figure 4.6: a) A right-handed bowtie building block composed of nearly @ropic PY

sites (@3 = 0:41, ay; = 0:1) and the corresponding relation ( ). b) A right-handed

bowtie building block composed of highly anisotropic PY s#s @3 = 0:1, ay; = 0:23) and

the corresponding relation ( ). The building blocks are right-handed for all values of

shown, but the resulting structures are right-handed for 0< . 42 and left-handed for
& 42, as in the left-handed helix shown.

dominated by the in-chain attraction. Conversely, highly aisotropic ellipsoids accentuate
the e ects of cross-chain repulsion. In fact, PY sites with idk-like ellipsoids have cross-
chain repulsion that canreversethe handedness of the resulting helix (Figure“4% In
these cases, an achiral building block (= 0 ) produces an ahelical structure ( =0 );
a right-handed building block ( 20) produces a right-handed structure ( > 0);
but a di erent right-handed building block of the same family of structureg 60)
produces aleft-handed structure ( < 0). Because varies smoothly with , there is
also a right-handed building block (43 that produces an achiral structure ( =0 ).
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4.3.7 Geometrical trends

The spacing between the bowties along the axis of the helixgknds nearly linearly on the
polar semiaxisa;3 according tod 2:3a;3 when is small. The value of the attractive
equatorial semiaxisap; has little e ect on d, since the organization of the helix along its
axis is due mostly to the polar axes rather than the equatoriaaxes. Values ofd di er
signi cantly from the small limit when cross-chain repulsion begins to in uence , sine
then the organization along the axis is a ected by the interetion of the "wings' of the
bowties, whose position depends on. Becaused is mostly insensitive to , the helix
pitch, which is proportional to d=, scales like ! for small

4.4 Conclusions

It is important to note we did not explicitly encode the modelfor the bowtie building
blocks so that right-handed building blocks would producessemblies of both chiralities.
Instead, this behavior emerged from a simple building blocnd the anisotropy inherent
in the PY sites. To the best of our knowledge, this bowtie buding block is the rst model
that produces both right- and left-handed structures fromight-handed building blocks.

Designing building blocks that assemble into ber-like sugrstructures is an important
theme in supramolecular chemistr§® As noted in previous research on families of single
molecules that assemble into helical superstructures ofrying chirality, " nanostructures
whose structural angles could be adjusted dynamically mighave applications in selective
stereochemistry and nonlinear optics.
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Chapter 5

Rigid bodies with PY sites: further designs

5.1 Bowties with long range interactions

The two-site rigid bodies discussed in Chapter 4 interacteda a short-range potential
( o = 1). Although short-range potentials are easier to interpreas analogues of short-
range forces between nanostructures, using largey permits di erent parameterizations
of the PY sites from Chapter 4. Consider the parameterizatioin Figure 5.1. Because
the equatorial semiaxes of the repulsive and attractive glsoids are equal, there is an
excluded-volume-type interaction in the equatorial plane However, in this parameter-
ization the attractive polar semiaxis is greater than the ngulsive polar semiaxis. In a
simulation with ¢ = 1, the ellipsoids would stack on top of one another and intpen-
etrate. Though there is nothing wrong with overlapping congurations, they do create
a very rough landscape whose low-lying minima are di cult to nd. This propensity
for overlap can be overcome by increasing the interactionnigth o, which smooths the
landscape (Sections 2.2.3 and 4.2.3).

For example, a system of six particles with these parameteasid , = 12 assembles
into a single helix for small dihedral angles (Figure 5.2). In light of previous researcR?
it is not surprising that the helix's rotation angle is nonzero even when =0 . Just as
with the o = 1 bowties discussed in Chapter 4, the helices break into adder morphology
when is increased beyond some critical value (Figure ®)2 Increasing further causes
the ladders to collapse into two-dimensional clusters in wdh the centers of the bowties
all lie in a plane (Figure 5.2i).

Increasing the number of particles in the system requiresadreasing o in order to
prevent overlap. For a system of 100 particles,o = 40 was su cient to prevent bowties
with the same parameters from overlapping. In this systemhe low-lying minima for
small consist of multiple helices of bowties wrapping around a canon center that has
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Figure 5.1: Cross-section of a Paramonov-YaliraRisite used to make up the bowtie rigid
bodies in simulations with ¢ > 1. The repulsive ellipsoid of revolution (red) is contained
inside the attractive ellipsoid of revolution (blue).

some smaller helices inside (Figure 5.3). Asincreases, these low-lying minima become
less prolate. Between =0 and =46 , the ratio of the two larger principal moments
of inertia to the smaller one decreased from about4lto about 1:2. The structure shown
for =90 is actually oblate: there are two small principal moments ahertia and one
large one.

Parametrizations like the one shown in Figure 5.1 present agblem because the value
of o needed to produce interesting results depends dh

5.2 Four-site rigid bodies

Rigid bodies of PY sites should be su cient for modeling moleules with four-fold sym-
metry. The chiral disk-shaped molecule synthesized and chaterized by Engelkamp,
Middelbeek, and Nolté€® has four benzo crown ether moieties attached to a phthalo-
cyanine ring. The structure of the molecule and the four-®trigid body inspired by it
are shown in Figure 5.4. Characterization of the molecule @hed that it self-assembles
into bers consisting of right-handed helices wound aroundne another in a left-handed
superstructure.

This complementarity of handednesses is essential for gopacking of the building
blocks. The helices assembled from these four-site builgimlocks have ridges corre-
sponding to the four corners and grooves corresponding toetlgrooves between the PY
ellipsoids. For structures to maximize the number of contés between constituent build-
ing blocks, the ridge of one helix must t into the groove of & neighbor. Equilibrium
structures of the four-site building block that reproduce e con guration with this type
of complementarity are shown in Figure 5.5.
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a) b)

Figure 5.2: Global minima for six bowtie building blocks wit ¢ = 12 and the parameters

shown in Figure 5.1. Only the repulsive ellipsoids are showa) =0 b) =23 c¢)
=34 d =57
a) b) c)

Figure 5.3: Low-lying minima for 100 bowtie building blockswith , = 40 and the
parameters shown in Figure 5.1a) =0 . The up-down axis is the principal axis with
the small moment of inertia.b) =46 , with the same orientation.c) =90 . The axis
perpendicular to the page is the principal axis with the larg moment of inertia; this is a
top-down view of the cluster.
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a) b)

top view

side view

Figure 5.4: a) A chiral disk-shaped molecul&® b) An achiral rigid body constructed from
four PY sites. The major semiaxes of all four ellipsoids li@mia plane, and their centers
are separated by twice the length of the repulsive major seaxies.

b)

Figure 5.5: Equilibrium structures of four-site building bocks @1 = a;» = 0:5, a;3 =
0:175,ap; = ap, = 0:55,a,3 = 0:265, ¢ =1) and schematics of the structuresa) A single

twisting stack. b) Two twisting stacks of opposite handedness whose grooveslaidges
are complementary.
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Chapter 6

Chiral polar potential

6.1 Chiral interactions without chiral structures

In Chapter 4, chirality was introduced by constructing chial bowtie building blocks.
Each individual ellipsoid in the building block was achirgland the interactions between
individual ellipsoids were achiral, as neither the ECF norite PY potential has any inher-
ent preference for one handedness or the other. The interact between whole building
blocks, however, was chiral and produced chiral assemblies

A coarse-grained chiral potential can reproduce the chiraiteractions between build-
ing blocks without any reference to a particular building lck structure. If a single
chiral site can reproduce the e ects of multiple achiral sds, the simulation might be less
computationally expensive. This simpli cation also claries the behavior of the potential
by removing the intermediate step in which the structure of e building block deter-
mines the chirality of the interaction between building blaks. Instead, the chirality of
the interaction must be explicitly encoded in the potential In this chapter, | present a
coarse-grained single-site chiral potential and, as a pfoof concept, use it to reproduce
the structures exhibited by systems of chiral rod-like virses.

6.2 The potential

The potential

2 3 . . . .
U= 5~ C0S AN +sin Ao AL (6.1)
describes the pairwise interaction between two chiral pale ' and !, wherej 'j =
j lj= |, separated byr. The length scale of the interaction is provided by . The angle

speci es the chirality of the interaction. The gradients otthis potential are provided in
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Figure 6.1: The minimum energy con guration for a dimer of cinal poles A" and
parametrized by the angle when the intercenter distance is xed.

Section A.1.

The A" Al term is similar to the rst term in the potential for a dipole. This term
favors orientations in which”' and A are parallel, sinceU has an overall minus sign.
The ~' Al pterm, on the other hand, favors orientations in which®' and *! are at
right angles and®'  ~ is parallel to f. If the distancer is xed, the dimer's minimum
energy con guration has the two chiral poles oriented sucthat ' Al is parallel to f
(Figure 6.1). In this case, ~ =cos and ~' A f=sin , where isthe angle
separating the poles. The potential is then proportional to

Cos cos +sin  sin = cos( ); (6.2)

so the angle separating the chiral poles in the minimum energy con gurabn is when
0< <

For =0, the interaction is achiral, and the poles prefer to be ajned. For =
the interaction is still achiral, but the poles prefer to be atiparallel. For = =2, the
interaction is achiral if the two ends of the pole are indistiguishable. For < < 0,
the dimer's minimum energy con guration has the two chiral ples separated by an angle
j j such that ~' Al s antiparallel to . Thus, reversing the sign of reverses the
chirality of the interaction.

BecauseU / r 3, this potential must be combined with a repulsive core to prent a
singularity at r = 0.
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Figure 6.2: lllustration of anfd virus membrane observed in experiment (reproduced from
Gibaud et al24).

6.3 Application to modeling of systems of chiral rod-like vir uses

The fd bacteriophage has been used as a model system for comparhe&ptetical systems
of rod-like particles with experiment®” An fd virus consists of about 2700 copies of a
coat protein wrapped around a single loop of DNA. It is 880 nm lghand has a diam-
eter of 6.6 nm, yielding an aspect ratio over 108. The virus is a useful experimental
platform because its length, chirality, and binding propdres can be adjusted using point
mutations of the coat protein. M13 bacteriophage, a naturbl-occurring mutant of fd
bacteriophage, has been used as a scaold in self-assenplnaterials®®*° In aqueous
suspensionfd viruses self-assemble into membranes and ribbons in whittetchirality, or
twist, is expelled to the surface of the assembly (Figure §.2* The chirality of the viruses
in these suspensions can be dynamically and continuouslynttolled via the temperature
of the system, suggesting a new method for manipulating thearphology of nanoscale
structures.

Molecular dynamics simulations of mixtures of hard spherglkinders and non-adsorbing
depletant molecules produced membranes similar to thoseufal in experiment?49! Be-
cause these simulations used simple hard spherocylindelsgy could only treat the case
of achiral building blocks. These are su cient to model cerin elements of the membrane
structure, but they cannot be used to investigate the e ect bthe building block chirality,
and the achiral spherocylinders probably cannot reprodudbe ribbon morphology.

6.4 Disks

Some features of the membrane morphology observed in expents onfd virus can be
reproduced using a coarse-grained building block and rastng the simulation to two
dimensions. In this case, the building block consists of twgites: an isotropic LJ site and
a chiral pole. A system of reduced units in which the LJ paraners o and o are set to
unity leaves the three independent parameters of the chiraite: the angle , the chiral
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pole strength , and the polar interaction length . There are no depletant molecules in
these simulations.

These building blocks assemble into nite 2D circular shegtover a wide range of
parameter space (Figure 6.3). These sheets are called mean@s when their radius is
much larger than the size of the building block$ and nite-sized disks in other case#
For =0, changesin and alter the spacing between the building blocks but do not
a ect the hexagonal packing. Because the LJ sites are isopig, the orientational ordering
is determined by the chiral poles alone. In disks that have angjle building block at the
center, the central pole is perpendicular to the plane of theisk. The building blocks in
the rst ring around the central pole are all tilted at an angke with respect to the central
pole. The second ring is tilted at an angle with respect to thest ring, and so on. The
incremental tilt between rings near the center of a large diss mostly constant, but the
incremental tilt increases near the edge of the disk. The iremental tilt near the center
increases with (Figure 6.4), but the tilt at a radius measured as a fraction bthe disk
radius appears to be insensitive to the number of particles the disk (Figure 6.5).

If is small enough oN is large enough so that the poles on the outside ring are titte
by less than or about = 2 with respect to the central pole, then there is no interrupbn to
the hexagonal packing. If is large enough so that the poles on the outer ring would be
tilted beyond =2, then the global minimum is probably no longer a single diskThe tilt
angles in Figures 6.8 6.3d, and 6.5 that exceed= 2 would probably not be energetically
favorable, since the poles tilted at those angles could foren new, smaller disk. The
global minima in these cases appear to consist of several #eradisks associated together,
suggesting that this building block can produce the structies treated in depletion-induced
phase transition theory?3

6.5 Helices and ribbons

Because thefd virus has a high aspect ratio, the isotropic LJ site is an inggopriate in-
gredient in a building block for 3D simulations. A 3D treatmaet of the chiral viruses must
introduce another parameter analogous to the virus lengthn the following simulations,
the building blocks each consist of a chiral pole and an in tely-thin rod of length L.
The interaction between these rods was LJ-like, and the paiise energy of two interacting

rods was set to >

6
4 o4 f—(;’d g’d ; (6.3)

whered is the distance of closest approach between the two rods asputed using Vega's
and Lago's algorithm® Setting the chiral pole length parameters ; = 1 and the rod
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Figure 6.3: Top views (upper panels) and side views (lower pels) of equilibrium disks
of 313 chiral pole building blocks restricted to two dimenshs. Because the LJ sites in
these building blocks are isotropic, the colored rods onindicate the orientation of the
chiral pole. The length of the rods is arbitrary.a) = 0. The other disks shown were
relaxed from starting coordinates very similar to this strature. b) =0:5.¢) =1:0.
The inner rings are tilted in the same right-handed sense as the = 0:5 disk, but the
outermost ring has tilted beyond = 2 with respect to the upright center.d) =1:25. A
ring about halfway through the disk's radius has tilted beynd =2 with respect to the
upright center.

43



14 , , —— , A
-5 =021
-—m— =0:2
1.2 —o— =03
—eo— =04
- =05
1L _
b
- 0.8F -
©
= 06 .
0.4} -
i
0.2+ _
0 | | | |
0 0.2 0.4 0.6 0.8 1

ring radius / membrane radius

Figure 6.4: The tilt of chiral poles in a disk of 313 chiral p@ building blocks restricted
to two dimensions. This rate of increase itself increases the angle grows. Each line
depicts the result of a simulation of a system with a given. Each point represents the
tilt of chiral poles in a given ring in the disk. (Compare withFigure 6.3. The centermost
chiral pole is upright and so has zero tilt. Stepping away rop by ring from the center
increases the tilt with respect to the center.)

energy ¢ = 1 yields a system of reduced units such that the 3D buildinglbck has four
free parameters: the angle, the pole strength , and the two rod length scales ;.4 and

L. Details of the algorithm used to computed and derivations of the gradients of the
potential are provided in Section A.2.

For . 1, the structures of the potential energy minima are mostlyetermined by the
rods and typically consist of isotropic jumbles. The struatres of the minima are mostly
insensitive to when & 1. Structures withL . 1 approach theL = 0 (i.e., isotropic
LJ) limit.

For & 1, the angle is the most interesting parameter. Building blocks with smia
assemble into disks (Figure 6.6). FoL= ¢ & 5, there is one single disk; for smalldr,
multiple disks stack on top of one another. For higher, the building blocks assemble
into helices. These helices are themselves composed of wmall disks. The competing
low-energy minima include a helical "tape' for the disk anchtee- and four-way joints for

the helix (Figure 6.7).
Finally, equilibrium structures for this building block include a twisted ribbon similar
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Figure 6.5: The tilt of chiral poles with = 0:5 in disks of varying size. Each line depicts
the result of a simulation of anN -particle system. The values foN were chosen so that,
for each newN, the radius of the resulting disk would increase by a constadistance.
(Compare with Figure 6.3. When the tilt exceeds=2 1.6, the chiral poles are tilted
beyond the normal edge seen in 63

to those observed irfd virus experiment$* and predicted by theory? (Figure 6.8). These
structures can be produced by relaxing from hexagonally-pgeed rectangles of upright
chiral poles similar to the upright disk structure in Figure6.3a. When viewed from a
direction perpendicular to the ribbon's long axis, the ribbn locally resembles a disk: it
has the same upright central pole and incremental tilting ithe rings of poles surrounding
it. The chirality of the interaction between the building blocks induces a right-handed
swirl in the plane of the ribbon as well as an overall twist aloy the long axis of the ribbon.
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top view

c)
side view {

Figure 6.6: Putative global minima for clusters of 25 chirgpole building blocks. Upper
panels show top view; lower panels show side views of the saystem. In these gures,
the length of the depicted rod is equal td_, the length of the building blocks' anisotropic
LJ-like rod. a) A single disk ( = 0:67, =15, g =0:5 L =4). b) Decreasing the
rod length produces two disks ( = 0:67, =10:25, ,,q =0:5,L = 1:3). ¢) Increasing
the chirality produces a helix ( =1:3, =10, g =1, L =4), which consists of small
disks. Each disk has a single upright pole and a surroundingng of ve building blocks.
The second representation of the structures has points at @éhcenters of the rods and
bonds connecting the centers of nearest neighbors. The diemce in color emphasizes the
helical structure.

top view b

side view

Figure 6.7: Low-lying minima for clusters of 25 chiral poleblding blocks. a) Top and
side views of a helical tape (= 0:67, = 10:25, g = 0:5,L =1:3). The dierence
in color emphasizes di erent parts of the structure.b) A three-way helix joint ( = 1:3,

=10, 4 =1, L =4). The joint is associated with deviations (emphasized imlack)
from the regular geometry found in the perfect helix.
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Figure 6.8: a) Schematic structure of the twisted ribbons observed in expiment (repro-
duced from Gibaud et al*). b) Two depictions of an equilibrium ribbon structure of
chiral pole building blocks ( =0:8, =10, g =1, L =2)relaxed from a hexagonally-
packed rectangle 5 building blocks wide and 50 long. Compaditee upright poles in the
center of the ribbon with the upright rods in the the red regias in a, and compare the
tilted poles at the left and right ends of the ribbon with the ilted rods in the orange
regions ina.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, | proposed and studied ve building blocks: e PY bowties in Chapter 4,
the two- and four-site PY building blocks in Chapter 5, and tle two types of chiral pole
building blocks in Chapter 6. Each of these systems has denstnated some aspect of the
relationship between the chirality of a building block and he chirality of the structured
formed by assembly of the building blocks. These building dtks might also prove to be
useful models of physical systems in their own right.

The PY bowtie is a simple building block with continuously agustable chirality. Ex-
amining single helices of PY bowties showed that the chirgfiof the helices, measured
by their rotation angles , depends on the parameterizationof the ellipsoids making up
the bowties almost as strongly as on the chirality of the buding blocks, measured by
their dihedral angle . For some parameterizations, is nearly proportional to . In
others, positive values can produce both positive and negative values . This discary
may provide some insight into the ambiguous relationship bheeen building block and
structure chiralities.

The four-site building block, though achiral, assembled ia chiral screw-like struc-
tures. One set of screw-like structures provided a demonstion of the compatibility of
certain sets of chiral structures.

| used the novel, coarse-grained chiral polar potential twoonstruct building blocks
for 2D and 3D simulations. The chiral polar potential favorgeometries in which adjacent
building blocks are at a speci ed but adjustable angle withaspect to one another. This
potential therefore favors chiral structures whose chirdy can be continuously adjusted.
These simulations produced a variety of morphologies, incling chiral disks, helices, and
ribbons. These assemblies closely resemble structuresniin experimental studies of a
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chiral rod-like virus.

7.2 Future work

Having observed a possibly novel relationship between theiclity of building blocks and
their assembled structures in simulations of the PY bowtiest is important to see if a
comparable physical system, like an anisotropic colloidan be made to exhibit this type
of behavior. An experimental collaboration with members ofhie Melville Laboratory for
Polymer Synthesis is planned. | am also interested in pursyy simulations of assemblies
of proteins whose chiralities switch when a single residug inutated. These changes in
structure chirality might be usefully compared with changs of building block parameter-
ization rather than switches in building block chirality. More computationally expensive
simulations using the original building block could also He clarify the relationship be-
tween the number of building blocks and the length of the heles at the bottom of the
main funnel on the PES.

A four-site PY building block, whether chiral or achiral, slould be able to reproduce
more complicated structures that demonstrate the steric copatibility of sets of chiral
structures beyond what has already been found.

The chiral polar potential can be used to add chiral interaddns to any building block.
Previous simulations of thefd viruses used achiral spherocylinders and depletant molées
to reproduce the entropic forces that cause the assembledustures to exhibit chirality.
By adding the chiral pole to this building block, | should be ble to reproduce the com-
plementarity of energetic and entropic chiral forces obsexd in experiment and measure
observables like line tension and twist penetration depthThe chiral pole potential might
also be useful for modeling biological structures with clal building blocks. For exam-
ple, blood clots are assemblies of bers in turn assembledin chiral rod-like building
blocks®

Overall, | hope that this thesis has demonstrated some newipciples that will help
unravel the relation between building block and assembly chlities. | also hope that
it has provided some new simulation tools and building bloskthat will advance future
studies of chiral assemblies.
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Appendix A

Gradients for potentials in Chapter 6

A.1 Chiral pole

The potential is

2 3 . ) . .

U= 3 C0S AN sin Ao AL (A.1)
where 'and 1 are the polesj 'j=j !j= is the pole strength, is the interaction
length scale, andr is the vector separating the sites.

Noting that
1
g(a f) = F[a (a MR, (A.2)
wherea is constant, the radial gradient is
du 23 o . . . .
— = cos 3~ Aptsin A A4 nb A (A3)
dri ré

To compute the angular gradients, rst note that

N - R' N R| RiOz (A4)
so that
2 . . . .
V" cos RO AL ggin RLAD AL g (A.5)
dpt r3 k k
w_ - cos A RpMO 4sin AT RINO L p (A.6)
R k k - -
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A.2 Lennard-Jones-like in nitely-thin rod

In the PY potential, a LJ-like interaction is modulated by the distance of closest approach
between two ellipsoids. In the rod potential, a LJ-like inteaction is modulated by the
distance of closest approach between two rods. In this waye rod potential is a limiting
case of a spherocylinder potential where the cylinder raditapproaches zero.

Two rods of lengthsL' and L/ centered atr' andr! with orientations de ned by their
poles™' and M have a distance of closest approach

d= min x' x; (A.7)
x'2Sh;x1 28!

whereS' is the set of all the points in rodi. It is convenient to write the points of closest
approachx' and x! as

xt=rl  Ial (A.8)
where ' j L'=2j. Thus,
d=  min i ialg Al (A.9)
VoLt L=z
The pairwise energy is
=4, g o ° (A.10)

The values are necessary for computing the energy and gradiefiihere is a deter-
ministic algorithm for nding ' and !.%* The algorithm is roughly:

1. Check if ' is parallel to 2. If the rods are parallel and exactly side-by-side, set
' = 1 =0. If the two rods are parallel but not side-by-side, set' = L'=2, where
the sign is the one that places' nearer the interior of the other rod, and set! to
the value that chooses the correct contact point i’ .

2. If the two rods are not parallel, compute
= 1 AlAj r Al AR i A (A.11)
i= 1 Al Al FoAlg ALAL i Al (A.12)
3. If ' is outside of the permitted range, change it to the closest tfie two values
L'=2. Recompute | using this ' as input.
4. If 1 is outside of the permitted range, change it to the closest dfie two values
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Li=2. Recompute ' using this | as input. If ' is still outside the permitted

range, change it to the closest endpoint.
5. Computed?.

It is easier to compute and take the derivatives of
the pairwise interaction is

d? rather than d. In these terms,

ul =4, ° 3 (A.13)
The translational derivatives are
du’l d
g =4 6 7¥3 g (A1)
d @ @@ 0 @
e e@ee @a (A15)
%:2 ri Ialg IA (A.16)
where
8 h g -
Q@ < 1 AL Al ANl A if ' Li=2
== o (A.17)
@ 0 if 1= Li=
8h i S
@j < 1 AN Al AL AL A if |6 LI=2
== | | (A.19)
@ "0 if i= Li=
%: 2 i Al VNN B (A.20)
As usual, dJi =dri = duU' =dr'.
The orientational derivatives are
dui d
iy | 7 4 = A.21
- A
d @ @ @ @ @
i, @p @p@ = @pe’ (A-22)
@%: 21 RLAT i (A.23)
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h i
@_I =2 1 AUV 2
@p h
+ 1
' h i
@__J =2 1 Al Aj 2
P h o
+ 1 AL,
i h i
Q =2 1 Al Aj 2
@p h
1 Al A
' h i
@__J =2 1 AlAl 2
@p o
+ 1 Al

AN RLNO ALl Al AlA] r Al
A1
INERVN| ij I AIO I A0 A ij N
r’ Ry Ry r

2 i j I AIO j ij j i j ij i
N N Rk/\ N rIJ AV BT\ N I‘” N

2 Rll(/\lo N rij N AlOAd rIj RL/\IO

@p- 2 R X

2 i . i IAIO i i . . .
N N N Rk/\J rIJ N A\ N rIJ |
Al RﬂAJO rl Al 4 Al Al rl Ri/\]
2 . . . JAiO " . . . . .
AN Al Rk/\J rIJ A AL rIJ Al

IR S
AJ r il Rﬂ/\JO + Al Rﬂ/\JO rii A0
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